
 Unit - I

INTRODUCTION

1. The Origin of PHP

2. PHP is better than its alternatives.

3. How PHP works with web server

4. Hardware and software requirements and installation

5. PHP pros and cons

 5.1. PHP: Past, Present, Future(PHP 3.O,PHP4.O,PHP5.O)

6. Strength of PHP.

7. Basic PHP Development

 7.1 How PHP script work.

 7.2. Basic PHP syntax

 7.3 PHP variables

 7.4 PHP Data types

 7.5 Displaying Type information

 7.6 Testing for specific data types

 7.7 Operators

 7.8 Variable manipulation

 7.9 Dynamic variables

 7.10 String in PHP

8. Control Structures

 8.1. The if statement

 8.2. Using the else clause with if statement, multiple if, nested if

 8.3. The Switch statement

 8.4. Using the ? Operator

1. Origin of PHP

 PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

 PHP is a server side scripting language that is embedded in HTML. It is used

to manage dynamic content, databases, session tracking, even build entire e-

commerce sites.

 It is integrated with a number of popular databases, including My SQL,

Postgre SQL, Oracle, Sybase, Informix, and Microsoft SQL Server.

 PHP is pleasingly zippy in its execution, especially when compiled as an

Apache module on the Unix side. The My SQL server, once started,

executes even very complex queries with huge result sets in record-setting

time.

 PHP supports a large number of major protocols such as POP3, IMAP, and

LDAP. PHP4 added support for Java and distributed object architectures

(COM and CORBA), making n-tier development a possibility for the first t.

 PHP is forgiving: PHP language tries to be as forgiving as possible.

 PHP Syntax is C-Like.

 Common uses of PHP.

2. PHP is better than its alternatives

 It is faster to code and faster to execute.

 The same PHP code runs unaltered on different Web servers and different

operation systems.

 Additionally, functionality that is standard with PHP is an add-on in other

environments. A more detailed argument follows.

 PHP is free. Anyone may visit the PHP Web site and download the complete

source code. Binaries are also available for Windows. The result is easy

entry into the experience. There is very little risk in trying PHP, and its

license allows the code to be used to develop works with no royalties.

 This is unlike products such as Allaire's Cold Fusion or Everyware's Tango

Enterprise that charge thousands of dollars for the software to interpret and

serve scripts. Even commercial giants like Netscape and IBM now recognize

the advantages of making source code available.

 PHP runs on UNIX, Windows 98, Windows NT, and the Macintosh. PHP is

designed to integrate with the Apache Web Server.

 Apache, another free technology, is the most popular Web server on the

Internet and comes with source code for UNIX and Windows. Commercial

flavors of Apache like Web Ten and Stronghold support PHP, too.

 But PHP works with other Web servers, including Microsoft's Internet

Information Server. Scripts may be moved between server platforms without

alteration. PHP supports ISAPI to allow for the performance benefits of

tightly coupling with Microsoft Web servers.

3. How PHP works with the web server

 The PHP software works with the web server, which is the software that

delivers web pages to the world.

 When you type a URL into your web browser’s address bar, you’re sending

a message to the web server at that URL, asking it to send you an HTML file.

The web server responds by sending the requested file. Your browser reads

the HTML file and displays the web page.

 You also request a file from the web server when you click a link in a web

page.

 In addition, the web server processes a file when you click a web page

button that submits a form. This process is essentially the same when PHP is

installed. You request a file, the web server happens to be running PHP, and

it sends HTML back to the browser, thanks to the programming in PHP.

 More specifically, when PHP is installed, the web server is configured to

expect certain file extensions to contain PHP language statements.

 Often the extension is .php or .phtml, but any extension can be used. When

the web server gets a request for a file with the designated extension, it sends

the HTML statements as is, but PHP statements are processed by the PHP

software before they’re sent to the requester.

 When PHP language statements are processed, only the output, or anything

printed to the screen is sent by the web server to the web browser.

 The PHP language statements, those that don’t produce any output to the

screen, aren’t included in the output sent to the browser, so the PHP code is

not normally seen by the user.

 For instance, in this simple PHP statement, <?php is the PHP opening tag,

and ?> is the closing tag.

 <?php echo "<p>Hello World</p>"; ?>

 Here, echo is a PHP instruction that tells PHP to output the upcoming text.

The PHP software processes the PHP statement and outputs the following:

 <p>Hello World</p>

 That regular HTML statement is delivered to the user’s browser. The

browser interprets the statement as HTML code and displays a web page

with one paragraph — Hello World.

 The PHP statement isn’t delivered to the browser, so the user never sees any

PHP statements. PHP and the web server must work closely together.

4. Hardware and Software Requirements and installation

 These are the following the software requirements

 WAMP Server

 LAMP Server

 MAMP Server

 XAMPP Server

 All these types of software automatic configure inside operating system after

installation it having PHP, My SQL, Apache and operating system base

configuration file, it doesn't need to configure manually.

Server Stands for

WAMP Microsoft window o/s, Apache Mysql PHP

LAMP Linux Operating System Apache Mysql PHP

MAMP Mac os Apache Mysql PHP

XAMPP x-os(cross operating system) Apache Mysql PHP Perl

Hardware Requirements

 If you would like to use a dedicated hosting server for running PHPKB

Knowledge Base Software or host it on a local server, you can use hardware

requirements and example specifications below for a reference.

 Recommended Hardware Specifications

 On small instances, server load is primarily driven by peak visitors however

you may use the following specifications for optimal performance.

 5 Concurrent Users 25 Concurrent Users 50 Concurrent Users

 1 GHz CPU

 2 GB RAM

 1 GB disk space

 Dual 2 GHz CPU

 4 GB RAM

 1 GB disk space

 Dual 2.6 GHz CPU

 8 GB RAM

 4 GB disk space

The PHP Installer

 Although an installer is available from php.net, I would recommend the

manual installation if you already have a web server configured and running.

 Manual Installation

 Manual installation offers several benefits:

 backing up, reinstalling, or moving the web server can be achieved in

seconds (see 8 Tips for Surviving PC Failure) and

 you have more control over PHP and Apache configuration.

Step 1: Download the files

 Download the latest PHP 5 ZIP package from www.php.net/downloads.php

 As always, virus scan the file and check its MD5 checksum using a tool such

as fsum.

Step 2: Extract the files

 We will install the PHP files to C:\php, so create that folder and extract the

contents of the ZIP file into it.

 PHP can be installed anywhere on your system, but you will need to change

the paths referenced in the following steps.

Step 3: Configure php.ini

 Copy C:\php\php.ini-development to C:\php\php.ini. There are several lines

you will need to change in a text editor (use search to find the current

setting).

 Where applicable, you will need to remove the leading semicolon to

uncomment these setting.

Define the extension directory:

 extension_dir = "C:/php/ext"

Enable extensions.

This will depend on the libraries you want to use, but the following extensions

should be suitable for the majority of applications:

extension=curl

extension=gd2

extension=mbstring

extension=mysql

extension=pdo_mysql

extension=xmlrpc

If you want to send emails using the PHP mail() function, enter the details of an

SMTP server (your ISP’s server should be suitable):

[mail function]

; For Win32 only.

SMTP = mail.myisp.com

smtp_port = 25

; For Win32 only.

sendmail_from = my@emailaddress.com

Step 4: Add C:\php to the path environment variable

 To ensure Windows can find PHP, you need to change the path environment

variable.

 Open Settings, type ‘environment variables’ into the search field and open

the result.

 Select the “Advanced” tab, and click the “Environment Variables” button.

 Scroll down the System variables list and click on “Path” followed by the

“Edit” button. Click “Edit text” and add ;C:\php to the end of the Variable

value line (remember the semicolon).

 5. PHP pros and cons

 5.1. PHP : past, present, future(PHP3.O,PHP4.O,PHP5.O)

 PHP3 is oldest stable version and it was pure procedural language

constructive like C

 Whereas PHP4 have some OOPs concept added like class and object with

new functionality

 PHP5 approximately all major oops functionality has been added along with

below thing

 Implementation of exceptions and exception handling

 Type hinting which allows you to force the type of a specific argument

 Overloading of methods through the __call function

 Full constructors and destructors etc through a __constuctor and

__destructor function

 __autoload function for dynamically including certain include files

depending on the class you are trying to create.

 Finality : can now use the final keyword to indicate that a method cannot be

overridden by a

 child. You can also declare an entire class as final which prevents it from

having any children at all.

 Interfaces & Abstract Classes

 Passed by Reference :

 An __clone method if you really want to duplicate an object

 Numbers of Functions Deprecated or removed in PHP 5.x like

ereg,ereg_replace,magic_quotes, session_register,register_globals, split(),

call_user_method() etc

6 .Strength of Php

 Supports database connectivity. PHP can access over 20 different databases

including My Sql, Oracle, and MS Access.

 Supports sessions. PHP can generate unique session IDs. The ID follows the

user during a single session on a web site. This simplifies creating shopping

cart applications and tracking user's behaviors.

 Eliminates client configuration problems. With PHP there is no need to

worry if the client has the appropriate software installed, since the

application is executed on the server.

 Reduces development time. Even a newcomer can begin developing PHP

applications in hours. Yet PHP contains many advanced features for

professional programmers.

 Maintains source code security. The user does not see your source code as

they do with JavaScript.

7. Basic PHP Development

7. 1 How PHP script work

 PHP always start with a browser making a request for a web page.

 This request is going to hit the web server.

 The web server will then analyze it and determine what to do with it.

 If the web server determines that the request is for a PHP file

(often index.php), it’ll pass that file to the PHP interpreter.

 The PHP interpreter will read the PHP file, parse it (and other included files)

and then execute it.

 Once the PHP interpreter finishes executing the PHP file, it’ll return an

output. The web server will take that output and send it back as a response to

the browser.

 7. 2 Basic PHP syntax

 PHP script starts with the <?php and ends with the ?> tag.

 The PHP delimiter <?php and ?> in the following example simply tells the

PHP engine to treat the enclosed code block as PHP code, rather than simple

HTML.

Syntax :

<?php

// Some code to be executed

echo "Hello, world!";

?>

 Every PHP statement end with a semicolon (;) — this tells the PHP engine

that the end of the current statement has been reached.

Comment Lines

 A comment is simply text that is ignored by the PHP engine. The purpose of

comments is to make the code more readable.

 It may help other developer (or you in the future when you edit the source

code) to understand what you were trying to do with the PHP.

 PHP support single-line as well as multi-line comments.

 To write a single-line comment either start the line with either two slashes (//)

or a hash symbol (#).

For example:

<?php

// This is a single line comment

This is also a single line comment

echo "Hello, world!";

?>

However to write multi-line comments, start the comment with a slash followed by

an asterisk (/*) and end the comment with an asterisk followed by a slash (*/).

Case Sensitivity in PHP

Variable names in PHP are case-sensitive.

As a result the variables $color, $Color and $COLOR are treated as three different

variables.

<?php

// Assign value to variable

$color = "blue";

// Try to print variable value

echo "The color of the sky is " . $color . "
";

echo "The color of the sky is " . $Color . "
";

echo "The color of the sky is " . $COLOR . "
";

?>

7.3 PHP variables

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on the left-hand

side and the expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not know in

advance whether it will be used to store a number or a string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one to another

when necessary.

 PHP variables are Perl-like.

7.4.PHP Data types

 PHP has a total of eight data types which we use to construct our variables –

 Integers − are whole numbers, without a decimal point, like 4195.

 Doubles − are floating-point numbers, like 3.14159 or 49.1.

 Booleans − have only two possible values either true or false.

 NULL − is a special type that only has one value: NULL.

 Strings − are sequences of characters, like 'PHP supports string operations.'

 Arrays − are named and indexed collections of other values.

 Objects − are instances of programmer-defined classes, which can package

up both other kinds of values and functions that are specific to the class.

 Resources − are special variables that hold references to resources external

to PHP (such as database connections).

Integers

 They are whole numbers, without a decimal point, like 4195.

 They are the simplest type.

 They correspond to simple whole numbers, both positive and negative.

Integers can be assigned to variables, or they can be used in expressions, like

 $int_var = 12345;

 $another_int = -12345 + 12345;

 Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16)

format.

 Decimal format is the default, octal integers are specified with a leading 0,

and hexadecimals have a leading 0x.

 Doubles

 They like 3.14159 or 49.1. By default, doubles print with the minimum

number of decimal places needed.

 For example, the code

<?php

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print("$many + $many_2 = $few
");

?>

 It produces the following browser output −

 2.28888 + 2.21112 = 4.5

Boolean

 They have only two possible values either true or false.

 PHP provides a couple of constants especially for use as Booleans: TRUE

and FALSE, which can be used like so −

 if (TRUE)

 print("This will always print
");

 else

 print("This will never print
"

NULL

 NULL is a special type that only has one value: NULL.

 To give a variable the NULL value, simply assign it like this −

 $my_var = NULL;

 The special constant NULL is capitalized by convention, but actually it is

case insensitive; you could just as well have typed −

 $my_var = null;

 A variable that has been assigned NULL has the following properties −

 It evaluates to FALSE in a Boolean context.

 It returns FALSE when tested with IsSet() function.

Strings

They are sequences of characters, like "PHP supports string operations". Following

are valid examples of string

 $string_1 = "This is a string in double quotes";

 $string_2 = 'This is a somewhat longer, singly quoted string';

 $string_39 = "This string has thirty-nine characters";

 $string_0 = ""; // a string with zero characters.

 8.Displaying Type Information with var_dump():

 var_dump() provides information about all the types contained within the

variable, as well as about the variable itself.

 $testing = 5;

 var_dump($testing);

 Output

 int(5)

7.5. Displaying type information

 This function displays structured information about one or more

expressions that includes its type and value.

 Arrays and objects are explored recursively with values indented

to show structure.

Example #1 var_dump()

<?php

$a = array(1, 2, array("a", "b", "c"));

var_dump($a);

?>

The above example will output:

array(3) {

 [0]=>

 int(1)

 [1]=>

 int(2)

 [2]=>

 array(3) {

 [0]=>

 string(1) "a"

 [1]=>

 string(1) "b"

 [2]=>

 string(1) "c"

 }

}

<?php

$b = 3.1;

$c = true;

var_dump($b, $c);

?>

The above example will output:

float(3.1)

bool(true)

7.6. Testing for a Specific Data Type

 PHP provides a special function corresponding to each data type.

 These functions accept a variable or value and return a Boolean

Function

 is_array()

 Returns true if the argument is an array

 is_bool()

 Returns true if the argument is boolean

 is_double()

 Returns true if the argument is a double

 is_int()

 Returns true if the argument is an integer

 is_object()

 Returns true if the argument is an object

 is_string()

 Returns true if the argument is a string

 is_null()

 Returns true if the argument is null

 is_resource()

 Returns true if the argument is a resource

7.7 .Operators

 PHP Operator is a symbol i.e used to perform operations on operands

 In simple words, operators are used to perform operations on variables or

values.

For example:

$num=10+20;//+ is the operator and 10,20 are operands

In the above example, + is the binary + operator, 10 and 20 are operands and

$num is variable.

PHP Operators can be categorized in following forms:

a. Arithmetic Operators

b. Assignment Operators

c. Bitwise Operators

d. Comparison Operators

e. Incrementing/Decrementing Operators

f. Logical Operators

g. String Operators

h. Array Operators

Arithmetic operators:

The PHP arithmetic operators are used to perform common arithmetic operations

such as addition, subtraction, etc. with numeric values.

Operator Name Example Explanation

+ Addition $a + $b Sum of operands

- Subtraction $a - $b Difference of operands

* Multiplication $a * $b Product of operands

/ Division $a / $b Quotient of operands

% Modulus $a % $b Remainder of operands

** Exponentiation $a ** $b $a raised to the power $b

Assignment Operators

The assignment operators are used to assign value to different variables. The basic

assignment operator is "=".

Operator Name Example Explanation

= Assign $a = $b The value of right operand is assigned to the left

operand.

+= Add then Assign $a += $b Addition same as $a = $a + $b

-= Subtract then Assign $a -= $b Subtraction same as $a = $a - $b

*= Multiply then Assign $a *= $b Multiplication same as $a = $a * $b

/= Divide then Assign

(quotient) $a /= $b Find quotient same as $a = $a / $b

%= Divide then Assign

(remainder) $a %= $b Find remainder same as $a = $a % $b

Bitwise operators

The bitwise operators are used to perform bit-level operations on operands. These

operators allow the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

& And $a & $b Bits that are 1 in both $a and $b are set to 1, otherwise 0.

| Or (Inclusive or) $a | $b Bits that are 1 in either $a or $b are set to 1

^ Xor (Exclusive or) $a ^ $b Bits that are 1 in either $a or $b are set to 0.

~ Not ~$a Bits that are 1 set to 0 and bits that are 0 are set to 1

Comparison Operators

Comparison operators allow comparing two values, such as number or string.

Below the list of comparison operators are given:

Operator Name Example Explanation

== Equal $a == $b Return TRUE if $a is equal to $b

=== Identical $a === $b Return TRUE if $a is equal to $b, and they are of

same data type

!== Not identical $a !== $b Return TRUE if $a is not equal to $b, and

they are not of same data type

!= Not equal $a != $b Return TRUE if $a is not equal to $b

<> Not equal $a <> $b Return TRUE if $a is not equal to $b

< Less than $a < $b Return TRUE if $a is less than $b

> Greater than $a > $b Return TRUE if $a is greater than $b

<= Less than or equal to $a <= $b Return TRUE if $a is less than or

equal $b

>= Greater than or equal to $a >= $b Return TRUE if $a is greater than or

equal $b

<=> Spaceship $a <=>$b Return -1 if $a is less than $b

Return 0 if $a is equal $b

Return 1 if $a is greater than $b

Incrementing/Decrementing Operators

The increment and decrement operators are used to increase and decrease the value

of a variable.

Operator Name Example Explanation

++ Increment ++$a Increment the value of $a by one, then return $a

$a++ Return $a, then increment the value of $a by one

-- decrement --$a Decrement the value of $a by one, then return $a

$a-- Return $a, then decrement the value of $a by one

Logical Operators

The logical operators are used to perform bit-level operations on operands. These

operators allow the evaluation and manipulation of specific bits within the integer.

Operator Name Example Explanation

and And $a and $b Return TRUE if both $a and $b are true

Or Or $a or $b Return TRUE if either $a or $b is true

xor Xor $a xor $b Return TRUE if either $ or $b is true but not both

! Not ! $a Return TRUE if $a is not true

&& And $a && $b Return TRUE if either $a and $b are true

|| Or $a || $b Return TRUE if either $a or $b is true

String Operators

The string operators are used to perform the operation on strings. There are two

string operators in PHP, which are given below:

Operator Name Example Explanation

. Concatenation $a . $b Concatenate both $a and $b

.= Concatenation and Assignment $a .= $b First concatenate $a and $b,

then assign the concatenated string to $a, e.g. $a = $a . $b

Array Operators

The array operators are used in case of array. Basically, these operators are used to

compare the values of arrays.

Operator Name Example Explanation

+ Union $a + $y Union of $a and $b

== Equality $a == $b Return TRUE if $a and $b have same key/value

pair

!= Inequality $a != $b Return TRUE if $a is not equal to $b

=== Identity $a === $b Return TRUE if $a and $b have same key/value

pair of same type in same order

!== Non-Identity $a !== $b Return TRUE if $a is not identical to $b

<> Inequality $a <> $b Return TRUE if $a is not equal to $b

7.7 Variable manipulation

 Variable manipulation is a method of specifying or editing variables in a

computer program.

 Variable manipulation can be used to create dynamic content in HTML and

programming languages. However, the method can also be used by an

attacker, to alter data that a browser sends to a Web server.

 A variable, in this context, is a string of text symbols and/or numerals that

can change, depending on conditions or on information passed to the

program.

 In mathematics, variable manipulation is the process of rearranging a

multivariable equation to express a specific variable as a function of other

variables.

 The variable thus singled-out is known as the dependent variable, while the

other variables are called independent variables.

 In this context, a variable is a mathematical quantity whose numerical value

can change, in contrast to constants that have fixed numerical values.

7.8 .Dynamic variables

 PHP allows us to use dynamic variable.

 Dynamic variable is variable variables.

 We can name a variable with the value stored in another variable.

 That is, one variable contains the name of another variable.

Example:

$text = ‘Hello World’;

$dynamicText = “text”;

echo ‘The dynamic ‘.$dynamicText. ‘ is ‘.${$dynamicText};

Output : The dynamic text is Hello World

We can implement it ${$dynamicText} or $$dynamicText .

Here we can associate variable to another variable. We can use it as alternative

of associative array and list. The time complexity also less then array and list

also.

7.8 String in PHP

 A string is a collection of characters. String is one of the data types

supported by PHP.

 The string variables can contain alphanumeric characters. Strings are created

when;

 You declare variable and assign string characters to it

 You can directly use them with echo statement.

 String are language construct, it helps capture words.

 Learning how strings work in PHP and how to manipulate them will make

you a very effective and productive developer.

8 .Control structures

 Control structure allows you to control the flow of code execution in your

application.

 Generally, a program is executed sequentially, line by line, and a control

structure allows you to alter that flow, usually depending on certain

conditions.

PHP supports a number of different control structures:

 if

 else

 elseif

 switch

 while

 do-while

 for

 foreach

 8.1. The If statement

 The if construct allows you to execute a piece of code if the expression provided

along with it evaluates to true.

Example:

<?php

$age = 50;

if ($age > 30)

{

 echo "Your age is greater than 30!";

}

?>

8.2 Using the Else clause with if Statement

 if the expression evaluates to true. On the other hand, if the expression evaluates

to false, it won't do anything.

 More often than not, you also want to execute a different code snippet if the

expression evaluates to false.

Syntax

if (expression)

{

 // code is executed if the expression evaluates to TRUE

}

else

{

 // code is executed if the expression evaluates to FALSE

}

Example

<?php

$age = 50;

if ($age < 30)

{

 echo "Your age is less than 30!";

}

else

{

 echo "Your age is greater than or equal to 30!";

}

?>

8.3. Multiple if, nested If Statement

 We can consider the elseif statement as an extension to the if-else construct.

 If you've got more than two choices to choose from, you can use the elseif

statement.

Syntax

if (expression1)

{

 // code is executed if the expression1 evaluates to TRUE

}

elseif (expression2)

{

 // code is executed if the expression2 evaluates to TRUE

}

elseif (expression3)

{

 // code is executed if the expression3 evaluates to TRUE

}

else

{

 // code is executed if the expression1, expression2 and expression3 evaluates to

FALSE, a default choice

Example

<?php

$age = 50;

if ($age < 30)

{

 echo "Your age is less than 30!";

}

elseif ($age > 30 && $age < 40)

{

 echo "Your age is between 30 and 40!";

}

elseif ($age > 40 && $age < 50)

{

 echo "Your age is between 40 and 50!";

}

else

{

 echo "Your age is greater than 50!";

}

?>

8.4 Switch Statement

 The switch statement is somewhat similar to the elseif statement which

we've just discussed in the previous section.

 The only difference is the expression which is being checked.

 In the case of the elseif statement, you have a set of different conditions, and

an appropriate action will be executed based on a condition.

 On the other hand, if you want to compare a variable with different values,

you can use the switch statement.

<?php

$favourite_site = 'Code';

switch ($favourite_site) {

 case 'Business':

 echo "My favourite site is business.tutsplus.com!";

 break;

 case 'Code':

 echo "My favourite site is code.tutsplus.com!";

 break;

 case 'Web Design':

 echo "My favourite site is webdesign.tutsplus.com!";

 break;

 case 'Music':

 echo "My favourite site is music.tutsplus.com!";

 break;

 case 'Photography':

 echo "My favourite site is photography.tutsplus.com!";

 break;

 default:

 echo "I like everything at tutsplus.com!";

}

?>

8.5 ? Operators

 This is called the Ternary Operator, and it's common to several languages,

including PHP, Javascript, Python, Ruby...

$x = $condition ? $trueVal : $falseVal;

// same as:

Example:

if ($condition) {

 $x = $trueVal;

} else {

 $x = $falseVal;

} error

 Unit - II

 ARRAY

1. Single dimensional array

2. Multi dimensional Arrays

3. Casting array

4. Associative Array

5. Accessing array elements

6. Looping through an array

7. Looping through an associative array.

8. Examining array

9. Joining Array

10. Sorting Array

11. Sorting associative array

12. Loops

➢ 12.1. While loop

➢ 12.2. Do while loop

➢ 12.3. For loop

13. Functions

 13.1 Introduction to function

14. PHP Library Function

❖ 14.1 Array function

❖ 14.2 String Function

❖ 14.3 Date and Time function

15. User defined function

• 15.1. Defining a Functions with Parameters and

without Parameters

• 15.2. Returning value from the function

o 15.3. Dynamic function calls accessing
variable with global statement

o 15.4 setting default values for the arguments

o 15.5.Passing argument to function by value

o 15.6.Passing argument to function by

reference

1. Single dimensional array:

 1.1How to create an array

 Array creation is pretty simple. First, you need to create a

variable and then tell PHP that you want that variable to be an array:

❖ $theVar = array();

❖ Now, $theVar is an array. However, it’s an empty array waiting for you to

come along and fill it.

❖ Technically, you can skip the variable creation step.

❖ It’s still a good idea to explicitly define an array because it helps you

remember the element is an array, and there are a few special cases (such as

passing an array into a function) where the definition really matters.

❖ How to fill an array

❖ An array is a container, so it’s a lot more fun if you put something in it.

❖ You can refer to an array element by adding an index (an integer)

representing which element of the array you’re talking about.

2. Multidimensional Arrays

 A multi-dimensional array each element in the main array can

also be an array. And each element in the sub-array can be an array, and so on.

Values in the multi-dimensional array are accessed using multiple index.

Example

<html>

 <body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

 </body>

</html>

Output:

Marks for mohammad in physics : 35

Marks for qadir in maths : 32

Marks for zara in chemistry : 39

3.Casting arrays

 The meaning of type casting is to use the value of a variable with

different data type.

 In other word typecasting is a way to utilize one data type variable into the

different data type.

 Typecasting is the explicit conversion of data type because user explicitly

defines the data type in which he wants to cast.

 In this explore various aspects of PHP Type casting.

 PHP does not require or support type definition of the variable. In PHP we

never define data type while declaring the variable.

 In PHP variables automatically decide the data type on the basis of the

value assignment or context.

For example:

<?php

$i =1;

var_dump($i); //$i is integer

$i = 2.3;

var_dump($i); //$i is float

$i = "php type casting";

var_dump($i); //$i is string

?>

 In above example, you can see that variable $i type is getting

changed on the different type of value assignment.

 So due to this flexible nature of the PHP, we do not need to type cast variable

always.

 But Sometimes when we need extra security in the variable we cast type.

For example, if we are taking some integer input from user then we should type

cast.

 Type casting in PHP works same as C programming.

 Desired data type name with parenthesis before the variable which we need to cast.

For example, if we need to cast the string to the integer then below will work:

<?php

$string_var = "string value for php type";

$int_var = (int)$string_var;

var_dump($int_var);

?>

We can cast following data type variable in PHP

(int), (integer) - cast to integer

(bool), (boolean) - cast to boolean

(float), (double), (real) - cast to float

(string) - cast to string

(array) - cast to array

(object) - cast to object

(unset) - cast to NULL (PHP 5)

PHP type Casting to Integer

Using (int) or (integer) keyword we can cast/convert any data type value to the

integer. If we need to take integer casting then we can also use intval() function.

If we will convert boolean to an integer then False will output 0 and true will

output 1. For example

<?php

$bool_false = false;

$int_val = (int) $bool_false ;

var_dump($int_val); //Output will be 0

$bool_true = true;

$int_val = (int) $bool_true ;

var_dump($int_val); //Output will be 1

?>

If we will convert resource data type to an integer then it will return unique

resource ID. For example

<?

$fp = fopen("filename.txt", "w");

$int_cast = (int) $fp;

var_dump($int_cast);

?>

Llll

4. Associative Array

 The associative arrays are very similar to numeric arrays in term

of functionality but they are different in terms of their index.

❖ Associative array will have their index as string so that you can establish a

strong association between key and values.

❖ To store the salaries of employees in an array, a numerically indexed array

would not be the best choice.

❖ Instead, we could use the employees names as the keys in our associative

array, and the value would be their respective salary.

Example:

<html>

 <body>

 <?php

 /* First method to associate create array. */

 $salaries = array("mohammad" => 2000, "qadir" => 1000, "zara" => 500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
"

 /* Second method to create array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

 </body>

</html>

This will produce the following result −

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low.

5.Accessing array elements

 Now that we have created an associative array and assigned

names to each element we can use those names to access the corresponding array

values. We can, therefore, extend our previous example to extract the customer

name from our $customerArray:

<?php

 $customerArray = array('customerName'=>'John Smith',

'customerAddress'=>'1 The Street', 'accountNumber'=>'123456789');

 echo $customerArray['customerName'];

?>

The result will be the customer name "John Smith" appearing in the browser

window.

6.Looping through an array and associative array.

• It is often necessary to loop through each element of an array to either read

or change the values contained therein. There are a number of ways that this

can be done.

• One such mechanism is to use the foreach loop. The foreach loop works

much like a for or while loop and allows you to iterate through each array

element. There are two ways to use foreach. The first assigns the value of

the current element to a specified variable which can then be accessed in the

body of the loop

 The syntax for this is:

foreach ($arrayName as $variable)

For example:

 $colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

 foreach ($colorArray as $color)

 {

 echo "$color
";

 }

This will result in the following output:

Red

Yellow

Green

Blue

Indigo

9.Looping through an associative array

 For associative arrays the foreach keyword allows you to

iterate through both the keys and the values using the following syntax:

foreach ($arrayName as $keyVariable=>$valueVariable)

For example:

 $customerArray = array('customerName'=>'John Smith',

'customerAddress'=>'1 The Street', 'accountNumber'=>'123456789');

 foreach ($customerArray as $key=>$value)

 {

 echo "Key = $key
";

 echo "Value = $value
";

 }

This will result in the following output:

Key = customerName

Value = John Smith

Key = customerAddress

Value = 1 The Street

Key = accountNumber

Value = 123456789

8.Examining array

➢ Array creation is pretty simple. First, you need to create a variable and then

tell PHP that you want that variable to be an array:

➢ $theVar = array();

➢ Now, $theVar is an array. However, it’s an empty array waiting for you to

come along and fill it.

➢ Technically, you can skip the variable creation step. It’s still a good idea to

explicitly define an array because it helps you remember the element is an

array, and there are a few special cases (such as passing an array into a

function) where

9.Joining array

 Now that we have created an associative array and assigned names

to each element we can use those names to access the corresponding array values.

 We can, therefore, extend our previous example to extract the

customer name from our $customerArray:

 array_merge($arr1, $arr2)

 If you want to combine two different arrays into a single array, you

can do so using this function.

 It doesn't matter whether the arrays to be combined are of same

type(indexed, associative etc) or different types, using this function we can

combine them into one single array.

 Let's take an example where we will merge an indexed array and an

associative array.

<?php

$hatchbacks = array(

 "Suzuki" => "Baleno",

 "Skoda" => "Fabia",

 "Hyundai" => "i20",

 "Tata" => "Tigor"

);

// friends who own the above cars

$friends = array("Vinod", "Javed", "Navjot", "Samuel");

// let's merge the two arrays into one

$merged = array_merge($hatchbacks, $friends);

print_r($merged);

?>

Array (

[Suzuki] => Baleno

[Skoda] => Fabia

[Hyundai] => i20

[Tata] => Tigor

[0] => Vinod

[1] => Javed

[2] => Navjot

[3] => Samuel

)

10.Sorting array

▪ Array can be sorted using the sort function.

▪ A number of different sorts are possible using the sort function.

The function takes two arguments.

❖ The first argument is the name of the array.

❖ The second indicates the sort algorithm to use.

❖ The available algorithms are SORT_NUMERIC, SORT_STRING and

SORT_REGULAR. If no sort type is specified, SORT_REGULAR is used.

❖ Similarly array items can be sorted in descending order using the rsort

function.

For example we can sort our array of color names:

 $colorArray = array("Red", "Yellow", "Green", "Blue", "Indigo");

 sort($colorArray, SORT_STRING);

It is also possible to perform a Natural Sort using the natsort function.

11.Sorting associative array

• Associative arrays can be sorted in two ways, either by

key or by value.

➢ To sort by key use ksort and krsort (reverse sort). To sort by value use the

asort and arsort functions.

➢ The syntax and options for these functions are as outlined for the sort and

rsort functions.

➢ Below we have a list of some commonly used array functions in PHP:

➢ sizeof($arr)

➢ This function returns the size of the array or the number of data elements

stored in the array.

➢ It is just like count($arr) method, that we used in previous tutorials while

traversing the array.

Example

<?php

$lamborghinis = array("Urus", "Huracan", "Aventador");

echo "Size of the array is: ". sizeof($lamborghinis);

?>

Size of the array is: 3

is_array($arr)

To check whether the provided data is in form of an array, we can use the is_array()

function. It returns True if the variable is an array and returns False otherwise.

<?php

$lamborghinis = array("Urus", "Huracan", "Aventador");

// using ternary operator

echo is_array($lamborghinis) ? 'Array' : 'not an Array';

$mycar = "Urus";

// using ternary operator

echo is_array($mycar) ? 'Array' : 'not an Array';

?>

Array

not an Array

in_array($var, $arr)

When using an array, we may often want to check whether a certain value is

present in the array or not. For example, if get a list of certain cars, like we do in

almost all our examples, to check if a certain car is added into the array, we can use

the in_array function.

Let's take an example and see,

<?php

$lamborghinis = array("Urus", "Huracan", "Aventador");

// new concept car by lamborghini

$concept = "estoque";

echo in_array($concept, $lamborghinis) ? 'Added to the Lineup' : 'Not yet!'

?>

print_r($arr)

Although this is not an array function, but it deserves a special mention here, as we

can use this function to print the array in the most descriptive way possible. This

function prints the complete representation of the array, along with all the keys and

values.

<?php

$lamborghinis = array("Urus", "Huracan", "Aventador");

print_r($lamborghinis);

?>

Array (

[0] => "Urus"

[1] => "Huracan"

[2] => "Aventador"

)

array_merge($arr1, $arr2)

If you want to combine two different arrays into a single array, you can do so using

this function. It doesn't matter whether the arrays to be combined are of same

type(indexed, associative etc) or different types, using this function we can

combine them into one single array.

Let's take an example where we will merge an indexed array and an associative

array.

<?php

$hatchbacks = array(

 "Suzuki" => "Baleno",

 "Skoda" => "Fabia",

 "Hyundai" => "i20",

 "Tata" => "Tigor"

);

// friends who own the above cars

$friends = array("Vinod", "Javed", "Navjot", "Samuel");

// let's merge the two arrays into one

$merged = array_merge($hatchbacks, $friends);

print_r($merged);

?>

Array (

[Suzuki] => Baleno

[Skoda] => Fabia

[Hyundai] => i20

[Tata] => Tigor

[0] => Vinod

[1] => Javed

[2] => Navjot

[3] => Samuel

)

12.Loops

 A Loop is an Iterative Control Structure that involves executing the

same number of code a number of times until a certain condition is met.

12.1While loop

• They are used to execute a block of code a repeatedly until the set condition

gets satisfied

• When to use while loops

• While loops are used to execute a block of code until a certain condition

becomes true.

• You can use a while loop to read records returned from a database query.

• Types of while loops

• Do… while - executes the block of code at least once before evaluating the

condition

• While… - checks the condition first. If it evaluates to true, the block of code

is executed as long as the condition is true. If it evaluates to false, the

execution of the while loop is terminated.

While loop

It has the following syntax

 <?php

while (condition){

block of code to be executed;

}

?>

 HERE,

“while(…){…}” is the while loop block code

“condition” is the condition to be evaluated by the while loop

“block of code…” is the code to be executed if the condition gets satisfied

How it works

The flow chart shown below illustrates how the while… loop works

PHP Loop and Control Structures

Practical example

The code below uses the while… loop to print numbers 1 to 5.

<?php

$i = 0;

while ($i < 5){

echo $i + 1 . "
";

$i++;

}

?>

Output:

1

2

3

4

5

12.2 Do While

The difference between While… loop and Do… while loop is do… while is

executed at-least once before the condition is evaluated.

Let’s now look at the basic syntax of a do… while loop

<?php

do{

block of code to be executed

}

?>

 while(condition);

HERE,

“do{…} while(…)” is the do… while loop block code

“condition” is the condition to be evaluated by the while loop

“block of code…” is the code that is executed at least once by the do… while loop

How it works

The flow chart shown below illustrates how the while… loop works

PHP Loop and Control Structures

We are now going to modify the while… loop example and implement it using the

do… while loop and set the counter initial value to 9.

The code below implements the above modified example

<?php

$i = 9;

do{

 echo "$i is"."
";

}

while($i < 9);

?>

The above code outputs:

9

12.3 For Loop

 The above code outputs “21 is greater than 7” For loops For... loops

execute the block of code a specifiednumber of times. There are basically two

types of for loops;

for

for… each.

Let’s now look at them separately. For loop It has the following basic syntax

<?php

for (initialize; condition; increment){

//code to be executed

}

?>

 HERE,

“for…{…}” is the loop block

“initialize” usually an integer; it is used to set the counter’s initial value.

“condition” the condition that is evaluated for each php execution. If it evaluates to

true then execution of the for... loop is terminated. If it evaluates to false, the

execution of the for... loop continues.

“increment” is used to increment the initial value of counter integer.

The flowchart shown below illustrates how for loop in php works

12.4. For Each loop

 The php foreach loop is used to iterate through array values. It

has the following basic syntax

<?php

foreach($array_variable as $array_values){

block of code to be executed

}

?>

 HERE,

“foreach(…){…}” is the foreach php loop block code

“$array_data” is the array variable to be looped through

“$array_value “ is the temporary variable that holds the current array item values.

“block of code…” is the piece of code that operates on the array values

How it works The flowchart shown below illustrates how the for… each… loop

works

PHP Loop and Control Structures

Practical examples

The code below uses for… each loop to read and print the elements of an array.

<?php

$animals_list = array("Lion","Wolf","Dog","Leopard","Tiger");

foreach($animals_list as $array_values){

echo $array_values . "
";

}

?>

Output:

Lion

Wolf

Dog

Leopard

Tiger

13.Function in php

13.1 Introduction to function

➢ PHP functions are similar to other programming languages.

➢ A function is a piece of code which takes one more input in the form of

parameter and does some processing and returns a value.

➢ You already have seen many functions like fopen() and fread() etc.

➢ They are built-in functions but PHP gives you option to create your own

functions as well.

There are two parts which should be clear to you

• Creating a PHP Function

• Calling a PHP Function

In fact you hardly need to create your own PHP function because there are already

more than 1000 of built-in library functions created for different area and you just

need to call them according to your requirement.

14.Library function

14.1 Array function

<html>

<body bgcolor="megenta">

<?php

$a=Array("crypt","php","dm");

$b=Array("mm","wap","php");

echo'<table align="center" bgcolor="white" border="2"><tr><td>';

echo'<h1 align="center"><u>Array Manipulation</u></h1>';

echo'<u>Given Array:</u>
 a=';

print_r($a);

echo'
 b=';

print_r($b);

echo'
<h3>Array Ascending

a() :</h3>';

sort($a);

print_r($a);

echo'
<h3>Array Decending

a() :</h3>';

rsort($a);

print_r($a);

echo'
<h3>Intersection of a(),b() :</h3>';

print_r(Array_intersect($a,$b));

echo'
<h3>Difference of a() & b():</h3>';

print_r(Array_diff($a,$b));

echo'<h3>Merging of a() &

b() :</h3>';

print_r(Array_merge($a,$b));

echo'
<h3>Array Slicing in a()

 :</h3>';

print_r(Array_slice($a,2));

echo'
<h3>Array Splicing in a()

 :</h3>';

print_r(Array_splice($a,2));

echo'
<h3>Array Poping from a():</h3>';

echo'Before :';

print_r($a);

Array_pop($a);

echo'
After :';

print_r($a);

echo'
<h3>Array Pushing into b():</h3>';

echo'Before :';

print_r($b);

Array_push($b,"50","30");

echo'
After :';

print_r($b);

echo'
<h3>Addition of b() Element:</h3>Sum=';

$i=Array_sum($b);

print_r($i);

echo"</td></tr></table>";

?>

</body></html>

14.2.String function

 They are sequences of characters, like "PHP supports string

operations". Following are valid examples of string

$string_1 = "This is a string in double quotes";

$string_2 = 'This is a somewhat longer, singly quoted string';

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters.

14.3.Date and Time function

<html>

<body bgcolor="green">

<?php

echo'<table align="center" bgcolor="white"><tr><td>';

echo'<h1><u>Date & Time

Function</u></h1>
';

echo'Current Date, i.e. 16-12-31
';

echo date("y-m-d");

echo'

Current Month, i.e. 08
';

echo date("m");

echo'

Current Month Name, i.e. Jan
';

echo date("M");

echo'

Current Timestamp
';

echo time();

$d=strtotime("tomorrow");

echo'

Tomorrow Date is
';

echo date("y-m-d h:i:sa",$d);

$d=strtotime("Next Saturday");

echo'

Next Saturday is
';

echo date("y-m-d h:i:sa",$d);

$d=strtotime("+3 months");

echo'

After 3 Month
';

echo date("y-m-d h:i:sa",$d);

$d=mktime(11,14,54,18,12,2014);

echo"

Created Date is
".date("y-m-d h:i:sa",$d);

echo'

Increase 1 day From Current Date
';

echo"Date is".date("y-m-d",time()+86400);

echo'

Decrease 15 days From Current Date
';

echo"Date is".date("y-m-d",time()-(86400*15));

echo'

Current Time in 12hr Format,i.e. 08:50:55pm
';

echo date("h:i:sa");

echo'

Current Time in 24hr Format,i.e. 18:50:55pm
';

echo date("H:i:s");

echo'</td></tr></table>';

?>

</body>

</html>

15.User defined function

 Creating PHP Function

 Its very easy to create your own PHP function. Suppose

you want to create a PHP function which will simply write a simple message on

your browser when you will call it.

 Following example creates a function called write Message() and then calls

it just after creating it.

 Note that while creating a function its name should start with keyword

function and all the PHP code should be put inside { and } braces as shown in the

following example below

<html>

 <head>

 <title>Writing PHP Function</title>

 </head>

 <body>

 <?php

 /* Defining a PHP Function */

 function writeMessage() {

 echo "You are really a nice person, Have a nice time!";

 }

 /* Calling a PHP Function */

 writeMessage();

 ?>

 </body>

</html>

This will display following result −

You are really a nice person, Have a nice time!

15.1. Defining a Functions with Parameters and without Parameters

 PHP gives you option to pass your parameters inside a function.

You can pass as many as parameters like.

 These parameters work like variables inside your function.

Following example takes two integer parameters and add them together and then

print them.

<html>

 <head>

 <title>Writing PHP Function with Parameters</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is : $sum";

 }

 addFunction(10, 20);

 ?>

 </body>

</html>

This will display following result −

Sum of the two numbers is : 30

15.2.Returning value from the function

 A function can return a value using the return statement in conjunction

with a value or object. return stops the execution of the function and sends the

value back to the calling code.

 You can return more than one value from a function using return

array(1,2,3,4).

 Following example takes two integer parameters and add them together

and then returns their sum to the calling program. Note that return keyword is used

to return a value from a function.

Example:

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 return $sum;

 }

 $return_value = addFunction(10, 20);

 echo "Returned value from the function : $return_value";

 ?>

 </body>

</html>

This will display following result −

Returned value from the function : 30

15.3 Dynamic Function Calls accessing variables with global statement

 It is possible to assign function names as strings to variables and

then treat these variables exactly as you would the function name itself. Following

example depicts this behavior.

<html>

 <head>

 <title>Dynamic Function Calls</title>

 </head>

 <body>

 <?php

 function sayHello() {

 echo "Hello
";

 }

 $function_holder = "sayHello";

 $function_holder();

 ?>

 </body>

</html>

This will display following result −

Hello

Following example takes two integer parameters and add them together and then

returns their sum to the calling program. Note that return keyword is used to return

a value from a function.

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 return $sum;

 }

 $return_value = addFunction(10, 20);

 echo "Returned value from the function : $return_value";

 ?>

 </body>

</html>

This will display following result −

Returned value from the function : 30

16.5 Setting Default Values for Function Parameters

 We can set a parameter to have a default value if the function's

caller doesn't pass it.

 Following function prints NULL in case use does not pass any

value to this function.

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function printMe($param = NULL) {

 print $param;

 }

 printMe("This is test");

 printMe();

 ?>

 </body>

</html>

This will produce following result −

This is test

Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't pass

it.

Following function prints NULL in case use does not pass any value to this

function.

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function printMe($param = NULL) {

 print $param;

 }

 printMe("This is test");

 printMe();

 ?>

 </body>

</html>

This will produce following result −

This is test

15.5.Passing argument to function by value

❖ PHP has a large number of built-in functions such as mathematical, string,

date, array functions etc.

❖ It is also possible to define a function as per specific requirement. Such

function is called user defined function.

❖ A function is a reusable block of statements that performs a specific task.

This block is defined with function keyword and is given a name that starts

with an alphabet or underscore.

❖ This function may be called from anywhere within the program any number

of times.

Syntax

//define a function

function myfunction($arg1, $arg2, ... $argn)

{

 statement1;

 statement2;

 ..

 ..

 return $val;

}

//call function

$ret=myfunction($arg1, $arg2, ... $argn);

Function may be defined with optional but any number of arguments. However,

same number of arguments must be provided while calling. Function's body can

contain any valid PHP code i.e. conditionals, loops etc. (even other functions or

classes may be defined inside a function). After executing statements in the block,

program control goes back to the location from which it was invoked irrespective

of presence of last statement of function block as return. An expression in front of

return statement returns its value to calling environment.

function with arguments

In following example, a function is defined with two formal arguments.

Example

<?php

function add($arg1, $arg2){

 echo $arg1+$arg2 . "\n";

}

add(10,20);

add("Hello", "World");

?>

Output

This will produce following result. −

30

15.6 Passing Arguments to a function by Reference

 It is possible to pass arguments to functions by reference. This means

that a reference to the variable is manipulated by the function rather than a copy of

the variable's value.

 Any changes made to an argument in these cases will change the value

of the original variable.

 You can pass an argument by reference by adding an ampersand to the

variable name in either the function call or the function definition.

Following example depicts both the cases.

<html>

 <head>

 <title>Passing Argument by Reference</title>

 </head>

 <body>

 <?php

 function addFive($num) {

 $num += 5;

 }

 function addSix(&$num) {

 $num += 6;

 }

 $orignum = 10;

 addFive($orignum);

 echo "Original Value is $orignum
";

 addSix($orignum);

 echo "Original Value is $orignum
";

 ?>

 </body>

</html>

This will display following result −

Original Value is 10

Original Value is 16

 Unit-III

Working with the file system

1. Creating and Deleting files

2. Reading and writing text Files

3. Working with directories

4. Checking for existence file

5. Determinig filesize

6. Opening a file for writing ,reading,appending

7. writing data to the Files and reading characters

8. working with Forms

o 8.1 Forms

o 8.2 Super Global Variables in PHP

o 8.3 Server Array

o 8.4 A script to acquire user input

o 8.5.Combine html with php code

o 8.6 Using Hidden Field

o 8.7 Redirect to the user

o 8.8 File Upload and script

 9. Validation

▪ 9.1 Server side validation and client side validation

▪ 9.2 Working with Regular Expressions

1. Creating and deleting files

 File handling is needed for any application. For some tasks to be

done file needs to be processed.

 File handling in PHP is similar as file handling is done by using any

programming language like C. PHP has many functions to work with normal files.

Those functions are:

1) fopen() – PHP fopen() function is used to open a file. First parameter of fopen()

contains name of the file which is to be opened and second parameter tells about

mode in which file needs to be opened, e.g.,

<?php

$file = fopen(“demo.txt”,'w');

?>

Files can be opened in any of the following modes :

“w” – Opens a file for write only. If file not exist then new file is created and if file

already exists then contents of file is erased.

“r” – File is opened for read only.

“a” – File is opened for write only. File pointer points to end of file. Existing data

in file is preserved.

“w+” – Opens file for read and write. If file not exist then new file is created and if

file already exists then contents of file is erased.

“r+” – File is opened for read/write.

“a+” – File is opened for write/read. File pointer points to end of file. Existing data

in file is preserved. If file is not there then new file is created.

“x” – New file is created for write only.

Deleting Files

To delete a file, you use the unlink() function. You need to pass the file name that

you want to delete to the unlink() function. The function returns true on success or

false on failure

<?php

$fn = './backup/test.bak';

if(unlink($fn)){

 echo sprintf("The file %s deleted successfully",$fn);

}else{

 echo sprintf("An error occurred deleting the file %s",$fn);

}

2. Reading and writing text Files

 1) fread() –– After file is opened using fopen() the contents of data

are read using fread(). It takes two arguments. One is file pointer and another is file

size in bytes, e.g.,

<?php

$filename = "demo.txt";

$file = fopen($filename, 'r');

$size = filesize($filename);

$filedata = fread($file, $size);

?>

 2) fwrite() – New file can be created or text can be appended to an

existing file using fwrite() function. Arguments for fwrite() function are file

pointer and text that is to written to file. It can contain optional third argument

where length of text to written is specified, e.g.,

<?php

$file = fopen("demo.txt", 'w');

$text = "Hello world\n";

fwrite($file, $text);

?>

4) fclose() – file is closed using fclose() function. Its argument is file which needs

to be closed, e.g.,

<?php

$file = fopen("demo.txt", 'r');

//some code to be executed

fclose($file);

?>

Notice that copy(), rename() and unlink() functions raise warning-level errors if the

file cannot be found therefore it is good practice to check the file exists using the

file_exists() function before copying, renaming or deleting.

3. Working with Directories

 A new directory can be created in PHP using the mkdir() function.

This function takes a path to the directory to be created.

 To create a directory in the same directory as your PHP script simply

provide the directory name. To create a new directory in a different directory

specify the full path when calling mkdir().

 A second, optional argument allows the specification of permissions

on the directory (controlling such issues as whether the directory is writable):

<?php

$result = mkdir ("/path/to/directory", "0777");

?>

4.Checking for existence file

 The file_exists() function in PHP is an inbuilt function which

is used to check whether a file or directory exists or not.

 The path of the file or directory you want to check is passed as

a parameter to the file_exists() function which returns True on success and False

on failure.

Syntax:

file_exists($path)

Parameters: The file_exists() function in PHP accepts only one parameter $path. It

specifies the path of the file or directory you want to check.

Return Value: It returns True on success and False on failure.

Errors And Exception:

The file_exists() function returns False if the path specified points to non-existent

files.

For files larger than 2gb, some of the filesystem functions may give unexpected

results since PHP’s integer type is signed and many platforms use 32bit integers.

Examples:

Input : echo file_exists('/user01/work/gfg.txt');

Output : 1

Input : $file_pointer = '/user01/work/gfg.txt';

 if (file_exists($file_pointer)) {

 echo "The file $file_pointer exists";

 }else {

 echo "The file $file_pointer does

 not exists";

 }

Output : 1

Below programs illustrate the file_exists() function.

Program 1:

<?php

// checking whether file exists or not

echo file_exists('/user01/work/gfg.txt');

?>

Output:

1

5. Determinig file size

 The filesize() function in PHP is an inbuilt function which is

used to return the size of a specified file. The filesize() function accepts the

filename as a parameter and returns the size of a file in bytes on success and False

on failure.

 The result of the filesize() function is cached and a function

called clearstatcache() is used to clear the cache.

Syntax:

filesize($filename)

Parameters: The filesize() function in PHP accepts only one parameter $filename.

It specifies the filename of the file whose size you want to check.

Return Value: It returns the size of a file in bytes on success and False on failure.

Program 1:

<?php

// displaying file size using

// filesize() function

echo filesize("gfg.txt");

?>

Output:

256

Program 2:

<?php

// displaying file size using

// filesize() function

$myfile = 'gfg.txt';

echo $myfile . ': ' . filesize($myfile) . ' bytes';

?>

Output:

gfg.txt : 256 bytes

6. Opening a file for writing,reading, appending

 File handling in PHP is similar as file handling is done by using

any programming language like C. PHP has many functions to work with normal

files.

Those functions are:

1) fopen() – PHP fopen() function is used to open a file. First parameter of fopen()

contains name of the file which is to be opened and second parameter tells about

mode in which file needs to be opened, e.g.,

<?php

$file = fopen(“demo.txt”,'w');

?>

Files can be opened in any of the following modes :

“w” – Opens a file for write only. If file not exist then new file is created and if file

already exists then contents of file is erased.

“r” – File is opened for read only.

“a” – File is opened for write only. File pointer points to end of file. Existing data

in file is preserved.

“w+” – Opens file for read and write. If file not exist then new file is created and if

file already exists then contents of file is erased.

“r+” – File is opened for read/write.

“a+” – File is opened for write/read. File pointer points to end of file. Existing data

in file is preserved. If file is not there then new file is created.

“x” – New file is created for write only.

Deleting Files

To delete a file, you use the unlink() function. You need to pass the file name that

you want to delete to the unlink() function. The function returns true on success or

false on failure

<?php

$fn = './backup/test.bak';

if(unlink($fn)){

 echo sprintf("The file %s deleted successfully",$fn);

}else{

 echo sprintf("An error occurred deleting the file %s",$fn);

}

 1) fread() –– After file is opened using fopen() the contents of data

are read using fread(). It takes two arguments. One is file pointer and another is file

size in bytes, e.g.,

<?php

$filename = "demo.txt";

$file = fopen($filename, 'r');

$size = filesize($filename);

$filedata = fread($file, $size);

?>

 2) fwrite() – New file can be created or text can be appended to an

existing file using fwrite() function. Arguments for fwrite() function are file

pointer and text that is to written to file. It can contain optional third argument

where length of text to written is specified, e.g.,

<?php

$file = fopen("demo.txt", 'w');

$text = "Hello world\n";

fwrite($file, $text);

?>

4) fclose() – file is closed using fclose() function. Its argument is file which needs

to be closed, e.g.,

<?php

$file = fopen("demo.txt", 'r');

//some code to be executed

fclose($file);

?>

Notice that copy(), rename() and unlink() functions raise warning-level errors if the

file cannot be found therefore it is good practice to check the file exists using the

file_exists() function before copying, renaming or deleting.

7. Writing data to the Files and reading characters

 The fwrite() function is used to write to a file.

 The first parameter of fwrite() contains the name of the file to write to

and the second parameter is the string to be written.

 The example below writes a couple of names into a new file called

"newfile.txt":

Example

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");

$txt = "John Doe\n";

fwrite($myfile, $txt);

$txt = "Jane Doe\n";

fwrite($myfile, $txt);

fclose($myfile);

?>

Notice that we wrote to the file "newfile.txt" twice. Each time we wrote to the file

we sent the string $txt that first contained "John Doe" and second contained "Jane

Doe". After we finished writing, we closed the file using the fclose() function.

If we open the "newfile.txt" file it would look like this:

John Doe

Jane Doe

8. Forms

 We can create and use forms in PHP. To get form data, we need to

use PHP superglobals $_GET and $_POST.

 The form request may be get or post. To retrieve data from get

request, we need to use $_GET, for post request $_POST.

PHP Get Form

 Get request is the default form request. The data passed through get

request is visible on the URL browser so it is not secured. You can send limited

amount of data through get request.

 Let's see a simple example to receive data from get request in PHP.

form1.html

<form action="welcome.php" method="get">

Name: <input type="text" name="name"/>

<input type="submit" value="visit"/>

</form>

File: welcome.php

<?php

$name=$_GET["name"];//receiving name field value in $name variable

echo "Welcome, $name";

?>

PHP Post Form

Post request is widely used to submit form that have large amount of data such as

file upload, image upload, login form, registration form etc.

The data passed through post request is not visible on the URL browser so it is

secured. You can send large amount of data through post request.

Let's see a simple example to receive data from post request in PHP.

File: form1.html

<form action="login.php" method="post">

<table>

<tr><td>Name:</td><td> <input type="text" name="name"/></td></tr>

<tr><td>Password:</td><td> <input type="password"

name="password"/></td></tr>

<tr><td colspan="2"><input type="submit" value="login"/> </td></tr>

</table>

</form>

File: login.php

<?php

$name=$_POST["name"];//receiving name field value in $name variable

$password=$_POST["password"];//receiving password field value in $password

variable

echo "Welcome: $name, your password is: $password";

?>

Output:

php form

8.2 Super global variables

➢ $_REQUEST

➢ $_POST

➢ $_GET

➢ $_FILES

➢ $_ENV

➢ $_COOKIE

➢ $_SESSION

This chapter will explain some of the superglobals, and the rest will be explained

in later chapters.

PHP $GLOBALS

 $GLOBALS is a PHP super global variable which is used to access

global variables from anywhere in the PHP script (also from within functions or

methods).

 PHP stores all global variables in an array called $GLOBALS[index].

The index holds the name of the variable.

The example below shows how to use the super global variable $GLOBALS:

Example

<?php

$x = 75;

$y = 25;

function addition() {

 $GLOBALS['z'] = $GLOBALS['x'] + $GLOBALS['y'];

}

addition();

echo $z;

?>

In the example above, since z is a variable present within the $GLOBALS array, it

is also accessible from outside the function!

PHP $_SERVER

$_SERVER is a PHP super global variable which holds information about headers,

paths, and script locations.

The example below shows how to use some of the elements in $_SERVER:

Example

<?php

echo $_SERVER['PHP_SELF'];

echo "
";

echo $_SERVER['SERVER_NAME'];

echo "
";

echo $_SERVER['HTTP_HOST'];

echo "
";

echo $_SERVER['HTTP_REFERER'];

echo "
";

echo $_SERVER['HTTP_USER_AGENT'];

echo "
";

echo $_SERVER['SCRIPT_NAME'];

?>

The following table lists the most important elements that can go inside

$_SERVER:

Element/Code Description

$_SERVER['PHP_SELF'] Returns the filename of the currently executing

script

$_SERVER['GATEWAY_INTERFACE'] Returns the version of the Common

Gateway Interface (CGI) the server is using

$_SERVER['SERVER_ADDR'] Returns the IP address of the host server

$_SERVER['SERVER_NAME'] Returns the name of the host server (such as

www.w3schools.com)

$_SERVER['SERVER_SOFTWARE'] Returns the server identification string

(such as Apache/2.2.24)

$_SERVER['SERVER_PROTOCOL'] Returns the name and revision of the

information protocol (such as HTTP/1.1)

PHP $_REQUEST

PHP $_REQUEST is used to collect data after submitting an HTML form.

The example below shows a form with an input field and a submit button. When a

user submits the data by clicking on "Submit", the form data is sent to the file

specified in the action attribute of the <form> tag. In this example, we point to this

file itself for processing form data. If you wish to use another PHP file to process

form data, replace that with the filename of your choice. Then, we can use the

super global variable $_REQUEST to collect the value of the input field:

Example

<html>

<body>

<form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // collect value of input field

 $name = $_REQUEST['fname'];

 if (empty($name)) {

 echo "Name is empty";

 } else {

 echo $name;

 }

}

?>

</body>

</html>

PHP $_POST

PHP $_POST is widely used to collect form data after submitting an HTML form

with method="post". $_POST is also widely used to pass variables.

The example below shows a form with an input field and a submit button. When a

user submits the data by clicking on "Submit", the form data is sent to the file

specified in the action attribute of the <form> tag. In this example, we point to the

file itself for processing form data. If you wish to use another PHP file to process

form data, replace that with the filename of your choice. Then, we can use the

super global variable $_POST to collect the value of the input field:

Example

<html>

<body>

<form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // collect value of input field

 $name = $_POST['fname'];

 if (empty($name)) {

 echo "Name is empty";

 } else {

 echo $name;

 }

}

?>

</body>

</html>

PHP $_GET

PHP $_GET can also be used to collect form data after submitting an HTML form

with method="get".

$_GET can also collect data sent in the URL.

Assume we have an HTML page that contains a hyperlink with parameters:

<html>

<body>

Test $GET

</body>

</html>

When a user clicks on the link "Test $GET", the parameters "subject" and "web"

are sent to "test_get.php", and you can then access their values in "test_get.php"

with $_GET.

The example below shows the code in "test_get.php":

Example

<html>

<body>

<?php

echo "Study " . $_GET['subject'] . " at " . $_GET['web'];

?>

</body>

</html>

8.3 The Server Array:

 $_SERVER is an array which holds information of headers,

paths, script locations.

 Web server creates the entries in the array.

This is not assured that every web server will provide similar information; rather

some servers may include or exclude some information which are not listed here.

$_SERVER has following basic properties:

1. Set by web server.

2. Directly related to the runtime environment of the current php script.

3. It does the same job as $HTTP_SERVER_VARS used to do in previous

versions of PHP

Example

<?php

echo $_SERVER['PHP_SELF'];

echo "
";

echo $_SERVER['SERVER_NAME'];

echo "
";

echo $_SERVER['HTTP_HOST'];

echo "
";

echo $_SERVER['HTTP_USER_AGENT'];

echo "
";

echo $_SERVER['SCRIPT_NAME'];

echo "
";

8.4 A script to acquire a user input

 1:<html>

 2: <head>

 3: <title>Listing 9.2 A simple HTML form</title>

 4: </head>

 5: <body>

 6: <form action="listing9.3.php">

 7: <input type="text" name="user">

 8:

 9: <textarea name="address" rows="5" cols="40">

10: </textarea>

11:

12: <input type="submit" value="hit it!">

13: </form>

14: </body>

15: </html>

➢ We define a form that contains a text field with the name "user" on line 7, a

text area with the name "address" on line 9, and a submit button on line

12.

➢ It is beyond the remit of this book to cover HTML in detail.

➢ If you find the HTML in these examples hard going, take a look at Sams

Teach Yourself HTML in 24 Hours or one of the numerous online HTML

tutorials.

➢ The FORM element's ACTION argument points to a file called listing

➢ 9.3.php, which processes the form information. Because we haven't added

anything more than a filename to the ACTION argument, the file

listing9.3.php should be in the same directory on the server as the document

that contains our HTML.

➢ Listing 9.3 creates the code that receives our users' input.

Listing 9.3 Reading Input from the Form in Listing 9.2

 1: <html>

 2: <head>

 3: <title>Listing 9.3 Reading input from the form in Listing 9.2</title>

 4: </head>

 5: <body>

 6: <?php

 7: print "Welcome $user<P>\n\n";

 8: print "Your address is:<P>\n\n$address";

 9: ?>

10: </body>

11: </html>

8.5. Combine html and PHP code

 The first is to embed the PHP code in your HTML file itself

with the .html extension—this requires a special consideration which we’ll discuss

in a moment.

 The other option, the preferred way, is to combine PHP and

HTML tags in .php files.

 Since PHP is a server-side scripting language, the code is

interpreted and run on the server side.

 For example, if you add the following code in your

index.html file, it won’t run out of the box.

<!DOCTYPE html>

<html>

 <head>

 <title>Embed PHP in a .html File</title>

 </head>

 <body>

 <h1><?php echo "Hello World" ?></h1>

 </body>

</html>

First of all, don’t worry if you haven’t seen this kind of mixed PHP and HTML

code before, as we’ll discuss it in detail throughout this article. The above example

outputs following in your browser:

<?php echo "Hello World" ?>

So as you can see, by default, PHP tags in your .html document are not detected,

and they're just considered plain-text, outputting without parsing.

That's because the server is usually configured to run PHP only for files with

the .php extension.

If you want to run your HTML files as PHP, you can tell the server to run

your .html files as PHP files, but it's a much better idea to put your mixed PHP and

HTML code into a file with the .php extension.

How to Add PHP Tags in Your HTML Page

When it comes to integrating PHP code with HTML content, you need to enclose

the PHP code with the PHP start tag <?php and the PHP end tag ?>. The code

wrapped between these two tags is considered to be PHP code, and thus it'll be

executed on the server side before the requested file is sent to the client browser.

<!DOCTYPE html>

 <title>How to put PHP in HTML - Simple Example</title>

 </head>

 <body>

 <h1><?php echo "This message is from server side." ?></h1>

 </body>

</html

8.6. Using Hidden Field

 hidden field is not displayed on the page.

➢ It simply stores the text value specified in the value attribute.

➢ Hidden fields are great for passing additional information from the form to

the server.

<label for="hiddenField">A hidden field</label>

<input type="hidden" name="hiddenField" id="hiddenField" value="" />

Example

The following form uses hidden field to store number of tries.

<?php//from w w w . j av a2s .c om

 $num_to_guess = 42;

 $message = "";

 if (! isset ($_POST ['guess'])) {

 $message = "Welcome!";

 } else if ($_POST ['guess'] > $num_to_guess) {

 $message = $_POST ['guess'] . " is too big!";

 } else if ($_POST ['guess'] < $num_to_guess) {

 $message = $_POST ['guess'] . " is too small!";

 } else {

 $message = "Well done!";

 }

 $guess = (int) $_POST ['guess'];

 $num_tries = (int) $_POST ['num_tries'];

 $num_tries ++;

 ?>

<html>

<body>

 <?php print $message?>

 Guess number: <?php print $num_tries?>

<form method="post" action="<?php

print $_SERVER ['PHP_SELF']?>">

<input type="hidden" name="num_tries"

 value="<?php

 print $num_tries?>" /> Type your guess here: <input type="text" name="guess"

value="<?php

 print $guess?>" />

</form>

</body>

</html>

8.Redirecting the user

 Redirection from one page to another in PHP is commonly

achieved using the following two ways:

Using Header Function in PHP:

The header() function is an inbuilt function in PHP which is used to send the raw

HTTP (Hyper Text Transfer Protocol) header to the client.

Syntax:

header($header, $replace, $http_response_code)

Parameters: This function accepts three parameters as mentioned above and

described below:

$header: This parameter is used to hold the header string.

$replace: This parameter is used to hold the replace parameter which indicates the

header should replace a previous similar header, or add a second header of the

same type. It is optional parameter.

$http_response_code: This parameter hold the HTTP response code.

Below program illustrates the header() function in PHP:

Program

<?php

// Redirect browser

header("Location: http://www.geeksforgeeks.org");

exit;

?>

Note: The die() or exit() function after header is mandatory. If die() or exit() is not

put after after the header(‘Location: ….’) then script may continue resulting in

unexpected behavior. For example, result in content being disclosed that actually

wanted to prevent with the redirect (HTTP 301).

Using JavaScript via PHP:

The windows.location object in JavaScript is used to get the current page

address(URL) and to redirect the browser to a new page. The window.location

object contains the crucial information about a page such as hostname, href,

pathname, port etc.

Example:

<html>

 <head>

 <title>window.location function</title>

 </head>

 <body>

 <p id="demo"></p>

 <script>

 document.getElementById("demo").innerHTML =

 "URL: " + window.location.href +"</br>";

 document.getElementById("demo").innerHTML =

 document.getElementById("demo").innerHTML +

 "Hostname: " + window.location.hostname + "</br>";

 document.getElementById("demo").innerHTML =

 document.getElementById("demo").innerHTML +

 "Protocal: " + window.location.protocol + "</br>";

 </script>

 </body>

</html>

Output:

URL: https://ide.geeksforgeeks.org/tryit.php

Hostname: ide.geeksforgeeks.org

Protocal: https:

8.8. File upload

❖ A PHP script can be used with a HTML form to allow users to upload files

to the server. Initially files are uploaded into a temporary directory and then

relocated to a target destination by a PHP script.

❖ Information in the phpinfo.php page describes the temporary directory that is

used for file uploads as upload_tmp_dir and the maximum permitted size of

files that can be uploaded is stated as upload_max_filesize. These

parameters are set into PHP configuration file php.ini

❖ The process of uploading a file follows these steps −

❖ The user opens the page containing a HTML form featuring a text files, a

browse button and a submit button.

❖ The user clicks the browse button and selects a file to upload from the local

PC.

❖ The full path to the selected file appears in the text filed then the user clicks

the submit button.

❖ The selected file is sent to the temporary directory on the server.

❖ The PHP script that was specified as the form handler in the form's action

attribute checks that the file has arrived and then copies the file into an

intended directory.

❖ The PHP script confirms the success to the user.

❖ As usual when writing files it is necessary for both temporary and final

locations to have permissions set that enable file writing. If either is set to be

read-only then process will fail.

An uploaded file could be a text file or image file or any document.

Creating an upload form

The following HTM code below creates an uploader form. This form is having

method attribute set to post and enctype attribute is set to multipart/form-data

<?php

 if(isset($_FILES['image'])){

 $errors= array();

 $file_name = $_FILES['image']['name'];

 $file_size =$_FILES['image']['size'];

 $file_tmp =$_FILES['image']['tmp_name'];

 $file_type=$_FILES['image']['type'];

 $file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));

 $extensions= array("jpeg","jpg","png");

 if(in_array($file_ext,$extensions)=== false){

 $errors[]="extension not allowed, please choose a JPEG or PNG file.";

 }

 if($file_size > 2097152){

 $errors[]='File size must be excately 2 MB';

 }

 if(empty($errors)==true){

 move_uploaded_file($file_tmp,"images/".$file_name);

 echo "Success";

 }else{

 print_r($errors);

 }

 }

?>

<html>

 <body>

 <form action="" method="POST" enctype="multipart/form-data">

 <input type="file" name="image" />

 <input type="submit"/>

 </form>

 </body>

</html>

It will produce the following result −

Upload Form

Creating an upload script

There is one global PHP variable called $_FILES. This variable is an associate

double dimension array and keeps all the information related to uploaded file. So if

the value assigned to the input's name attribute in uploading form was file, then

PHP would create following five variables −

$_FILES['file']['tmp_name'] − the uploaded file in the temporary directory on the

web server.

$_FILES['file']['name'] − the actual name of the uploaded file.

$_FILES['file']['size'] − the size in bytes of the uploaded file.

$_FILES['file']['type'] − the MIME type of the uploaded file.

$_FILES['file']['error'] − the error code associated with this file upload.

Example

Below example should allow upload images and gives back result as uploaded file

information.

Live Demo

<?php

 if(isset($_FILES['image'])){

 $errors= array();

 $file_name = $_FILES['image']['name'];

 $file_size = $_FILES['image']['size'];

 $file_tmp = $_FILES['image']['tmp_name'];

 $file_type = $_FILES['image']['type'];

 $file_ext=strtolower(end(explode('.',$_FILES['image']['name'])));

 $extensions= array("jpeg","jpg","png");

 if(in_array($file_ext,$extensions)=== false){

 $errors[]="extension not allowed, please choose a JPEG or PNG file.";

 }

 if($file_size > 2097152) {

 $errors[]='File size must be excately 2 MB';

 }

 if(empty($errors)==true) {

 move_uploaded_file($file_tmp,"images/".$file_name);

 echo "Success";

 }else{

 print_r($errors);

 }

 }

?>

<html>

 <body>

 <form action = "" method = "POST" enctype = "multipart/form-data">

 <input type = "file" name = "image" />

 <input type = "submit"/>

 Sent file: <?php echo $_FILES['image']['name']; ?>

 File size: <?php echo $_FILES['image']['size']; ?>

 File type: <?php echo $_FILES['image']['type'] ?>

 </form

 </body>

</html>

It will produce the following result −

Upload Script

9. Validation

9.1 client side and server side validation

 Validation means check the input submitted by the user. There are

two types of validation are available in PHP. They are as follows

Client-Side Validation − Validation is performed on the client machine web

browsers.

Server Side Validation − After submitted by data, The data has sent to a server and

perform validation checks in server machine.

Some of Validation rules for field

Field Validation Rules

Name Should required letters and white-spaces

Email Should required @ and .

Website Should required a valid URL

Radio Must be selectable at least once

Check Box Must be checkable at least once

Drop Down menu Must be selectable at least once

Valid URL

Below code shows validation of URL

$website = input($_POST["site"]);

if (!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?=~_|!:,.;]*[-a-z0-

9+&@#\/%=~_|]/i",$website)) {

 $websiteErr = "Invalid URL";

}

Above syntax will verify whether a given URL is valid or not. It should allow

some keywords as https, ftp, www, a-z, 0-9,..etc..

Valid Email

Below code shows validation of Email address

$email = input($_POST["email"]);

if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid format and please re-enter valid email";

}

Above syntax will verify whether given Email address is well-formed or not.if it is

not, it will show an error message.

Example

Example below shows the form with required field validation

<html>

 <head>

 <style>

 .error {color: #FF0000;}

 </style>

 </head>

 <body>

 <?php

 // define variables and set to empty values

 $nameErr = $emailErr = $genderErr = $websiteErr = "";

 $name = $email = $gender = $comment = $website = "";

 if ($_SERVER["REQUEST_METHOD"] == "POST") {

 if (empty($_POST["name"])) {

 $nameErr = "Name is required";

 }else {

 $name = test_input($_POST["name"]);

 }

 if (empty($_POST["email"])) {

 $emailErr = "Email is required";

 }else {

 $email = test_input($_POST["email"]);

 // check if e-mail address is well-formed

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

 }

 }

 if (empty($_POST["website"])) {

 $website = "";

 }else {

 $website = test_input($_POST["website"]);

 }

 if (empty($_POST["comment"])) {

 $comment = "";

 }else {

 $comment = test_input($_POST["comment"]);

 }

 if (empty($_POST["gender"])) {

 $genderErr = "Gender is required";

 }else {

 $gender = test_input($_POST["gender"]);

 }

 }

 function test_input($data) {

 $data = trim($data);

 $data = stripslashes($data);

 $data = htmlspecialchars($data);

 return $data;

 }

 ?>

 <h2>Absolute classes registration</h2>

 <p>* required field.</p>

 <form method = "post" action = "<?php

 echo htmlspecialchars($_SERVER["PHP_SELF"]);?>">

 <table>

 <tr>

 <td>Name:</td>

 <td><input type = "text" name = "name">

 * <?php echo $nameErr;?>

 </td>

 </tr>

 <tr>

 <td>E-mail: </td>

 <td><input type = "text" name = "email">

 * <?php echo $emailErr;?>

 </td>

 </tr>

 <tr>

 <td>Time:</td>

 <td> <input type = "text" name = "website">

 <?php echo $websiteErr;?>

 </td>

 </tr>

 <tr>

 <td>Classes:</td>

 <td> <textarea name = "comment" rows = "5" cols =

"40"></textarea></td>

 </tr>

 <tr>

 <td>Gender:</td>

 <td>

 <input type = "radio" name = "gender" value = "female">Female

 <input type = "radio" name = "gender" value = "male">Male

 * <?php echo $genderErr;?>

 </td>

 </tr>

 <td>

 <input type = "submit" name = "submit" value = "Submit">

 </td>

 </table>

 </form>

 <?php

 echo "<h2>Your given values are as:</h2>";

 echo $name;

 echo "
";

 echo $email;

 echo "
";

 echo $website;

 echo "
"

 echo $comment;

 echo "
";

 echo $gender;

 ?>

 </body>

</html>

It will produce the following result

9.2. Working with Regular Expressions

• Regular expressions commonly known as a regex

(regexes) are a sequence of characters describing a

special search pattern in the form of text string.

❖ They are basically used in programming world algorithms for matching

some loosely defined patterns to achieve some relevant tasks

❖ . Some times regexes are understood as a mini programming language with a

pattern notation which allows the users to parse text strings.

❖ The exact sequence of characters are unpredictable beforehand, so the regex

helps in fetching the required strings based on a pattern definition.

❖ Regular Expression is a compact way of describing a string pattern that

matches a particular amount of text.

❖ As you know, PHP is an open-source language commonly used for website

creation, it provides regular expression functions as an important tool. Like

PHP, many other programming languages have their own implementation of

regular expressions.

❖ This is the same with other applications also, which have their own support

of regexes having various syntaxes. Many available modern languages and

tools apply regexes on very large files and strings.

❖ Let us look into some of the advantages and uses of regular expressions in

our applications.

❖ Advantages and uses of Regular expressions:

❖ In many scenarios, developers face problems whenever data are collected in

free text fields as most of the programming deals with data entries. Regular

expressions are used almost everywhere in today’s application programming.

❖ Regular expressions help in validation of text strings which are of

programmer’s interest.

❖ It offers a powerful tool for analyzing, searching a pattern and modifying the

text data.

❖ It helps in searching specific string pattern and extracting matching results in

a flexible manner.

❖ It helps in parsing text files looking for a defined sequence of characters for

further analysis or data manipulation.

❖ With the help of in-built regexes functions, easy and simple solutions are

provided for identifying patterns.

❖ It effectively saves a lot of development time, which are in search of specific

string pattern.

❖ It helps in important user information validations like email address, phone

numbers and IP address.

❖ It helps in highlighting special keywords in a file based on search result or

input.

❖ It helps in identifying specific template tags and replacing those data with

the actual data as per the requirement.

❖ Regexes are very useful for creation of HTML template system recognizing

tags.

❖ Regexes are mostly used for browser detection, spam filteration, checking

password strength and form validations.

❖ We cannot cover everything under this topic, but let us look into some of the

major regular expression concepts. The following table shows some regular

expressions and the corresponding string which matches the regular

expression patterns

❖ Regular Expression Matches

geeks The string “geeks”

^geeks The string which starts with “geeks”

geeks$ The string which have “geeks” at the end.

^geeks$ The string where “geeks” is alone on a string.

[abc] a, b, or c

[a-z] Any lowercase letter

[^A-Z] Any letter which is NOT a uppercase letter

(gif|png) Either “gif” or “png”

[a-z]+ One or more lowercase letters

^[a-zA-Z0-9]{1, }$ Any word with at least one number or one letter

([ax])([by]) ab, ay, xb, xy

[^A-Za-z0-9] Any symbol other than a letter or other than number

([A-Z]{3}|[0-9]{5}) Matches three letters or five numbers

Note: Complex search patterns can be created by applying some basic regular

expression rules. Even many arithmetic operators like +, ^, – are used by regular

expressions for creating little complex patterns.

Operators in Regular Expression: Let us look into some of the operators in PHP

regular expressions.

Operator Description

^ It denotes the start of string.

$ It denotes the end of string.

. It denotes almost any single character.

() It denotes a group of expressions.

[] It finds a range of characters for example [xyz] means x, y or z .

[^] It finds the items which are not in range for example [^abc] means NOT a, b

or c.

– (dash) It finds for character range within the given item range for example

[a-z] means a through z.

| (pipe) It is the logical OR for example x | y means x OR y.

? It denotes zero or one of preceding character or item range.

* It denotes zero or more of preceding character or item range.

+ It denotes one or more of preceding character or item range.

{n} It denotes exactly n times of preceding character or item range for example

n{2}.

{n, } It denotes atleast n times of preceding character or item range for example

n{2, }.

{n, m} It denotes atleast n but not more than m times for example n{2, 4}

means 2 to 4 of n.

\ It denotes the escape character.

Special Character Classes in Regular Expressions: Let us look into some of the

special characters used in regular expressions

The below listed in-built functions are case-sensitive.

Function Definition

preg_match() This function searches for a specific pattern against some string.

It returns true if pattern exists and false otherwise.

preg_match_all() This function searches for all the occurrences of string pattern

against the string. This function is very useful for search and replace.

ereg_replace() This function searches for specific string pattern and replace the

original string with the replacement string, if found.

eregi_replace() The function behaves like ereg_replace() provided the search

for pattern is not case sensitive.

preg_replace() This function behaves like ereg_replace() function provided the

regular expressions can be used in the pattern and replacement strings.

preg_split() The function behaves like the PHP split() function. It splits the string

by regular expressions as its paramaters.

preg_grep() This function searches all elements which matches the regular

expression pattern and returns the output array.

preg_quote() This function takes string and quotes in front of every character

which matches the regular expression.

ereg() This function searches for a string which is specified by a pattern and returns

true if found, otherwise returns false.

eregi() This function behaves like ereg() function provided the search is not

case sensitive.

Example 1:

<?php

// Declare a regular expression

$regex = '/^[a-zA-Z]*$/';

// Declare a string

$nameString = 'Sharukh khan';

// Use preg_match() function to

// search string pattern

if(preg_match($regex, $nameString)) {

 echo("Name string matching with"

 . " regular expression");

}

else {

 echo("Only letters and white space . " allowed in name string");

}

?>

Output:

Name string matching with regular expression

UNIT - IV

CLASSES AND OBJECTS

1. Introduction of object oriented programming define a class

2. Creating an object:

3. Object properties and methods

4. Object constructor and Destructor

5. Class Constants and access modifier

6. Class inheritance

7. Abstract Classes and methods

8. Object serialization

9. Checking for class and method existence

10. What is Exception?

11. Introduction to data base and sql

12. Connecting to My sql

13. Database creation, selection

14. Database table creation updates, delete

15. Insert table, update,delete, data to the table

16. Fetch data from table acquiring the values, Joins query

17. COOKIES

17.1 Anatomy of a Cookies

17.2 .Setting Cookies with PHP

17.3 Deleting Cookie with PHP

17.4 Creating cookies

. 17.5Creating Session Cookies

17.6. Query string

1.INTRODUCTION OF OBJECT ORIENTED PROGRAMMING

 DEFINE A CLASS

 Object-oriented programming is a programming model organized

around Object rather than the actions and data rather than logic.

Class:

➢ A class is an entity that determines how an object will behave and what
the object will contain. In other words, it is a blueprint or a set of
instruction to build a specific type of object.

➢ In PHP, declare a class using the class keyword, followed by the name of
the class and a set of curly braces ({}).

Syntax :

<? Php

Class MyClass
 {
 // Class properties and methods go here
 }
?>

2. Creating an Object:

➢ A class defines an individual instance of the data structure. We define a

class once and then make many objects that belong to it.

➢ Objects are also known as an instance.

➢ An object is something that can perform a set of related activities.

Syntax:

<?Php
Class MyClass
{
 // Class properties and methods go here
}
$obj = new MyClass;
var_dump($obj);
?>

Example of class and object:

<?php
class demo
{
 private $a= "hello javatpoint";
 public function display()
 {
 echo $this->a;
 }
}
$obj = new demo();
$obj->display();
?>

3. Object properties and methods

➢ We call properties to the variables inside a class. Properties can accept

values like strings, integers, and booleans (true/false values), like any

other variable. Let's add some properties to the Car class.

Example:

Class Car {

 public $comp;
 public $color = 'beige';
 public $hasSunRoof = true;

}

• We put the public keyword in front of a class property.
• The naming convention is to start the property name with a lower case letter.

• If the name contains more than one word, all of the words, except for the first
word, start with an upper case letter. For example, $color or $hasSunRoof.

• A property can have a default value. For example, $color = 'beige'.
• We can also create a property without a default value. See the

property $comp in the above example.

4. Object constructor and Destructor

o PHP 5 allows developers to declare constructor methods for classes.

o Constructor is suitable for any initialization that the object may need
before it is used.

o We can design constructor using "__construct" or same name as class
name.

o Parent constructors are not called implicitly if the child class defines a
constructor. In order to run a parent constructor, a call
to parent::__construct().

Example

<?Php
 class Example
 {
 public function __construct()
 {
 echo "Hello javatpoint";
 }

 }
 $obj = new Example();
 $obj = new Example();
?>

Output:

DESTRUCTOR

o PHP 5 introduces a destructor concept similar to that of other object-
oriented languages, such as C++.

o The destructor method will be called as soon as all references to a
particular object are removed or when the object is explicitly
destroyed in any order in shutdown sequence.

o We create destructor by using "__destruct" function.

Example

<?php
 class demo
 {
 public function demo()
 {
 echo "constructor1...";
 }
 }

 class demo1 extends demo
 {
 public function __construct()
 {
 echo parent::demo();
 echo "constructor2...";
 }
 public function __destruct()
 {
 echo "destroy.....";
 }
 }
 $obj= new demo1();
?>
Output:

5. Class Constants and Access modifiers

 A constant is somewhat like a variable, in that it holds a value, but is

really more like a function because a constant is immutable.

 Once you declare a constant, it does not change.

 Declaring one constant is easy, as is done in this version of MyClass

class MyClass {
 const requiredMargin = 1.7;

 function __construct($incomingValue) {
 // Statements here run every time
 // an instance of the class
 // is created.
 }
}

Access modifier

 To set the access rights for class methods and variables we use access
modifiers which are nothing but PHP keywords.

 We can even assign some of these access modifiers to the class itself to make
the class behave in a special way.

Following are the PHP keywords which are used as access modifiers along
with their meaning:

1. public: When we define class members as public, then they are

accessible from anywhere, even from outside of the class scope.

2. private: When we define class members as private, they can only be

accessed from within the class itself.

3. protected: This is same as private, with one exception, the class

members defined as protected can still be accessed from its

subclass(We will learn about subclasses when we will learn about

Inheritance).

4. abstract: This keyword is only used for PHP classes and its member

functions.

5. final: The class methods defined as final, can not be changed or

overriden by any subclass.

6. Class inheritance

 Inheritance in OOP = When a class derives from another class.

The child class will inherit all the public and protected properties and
methods from the parent class.

 In addition, it can have its own properties and methods.

An inherited class is defined by using the extends keyword.

Example:

<?php

class Fruit {

 public $name;

 public $color;

 public function __construct($name, $color) {

 $this->name = $name;

 $this->color = $color;

 }

 public function intro() {

 echo "The fruit is {$this->name} and the color is {$this->color}.";

 }

}

// Strawberry is inherited from Fruit

class Strawberry extends Fruit {

 public function message() {

 echo "Am I a fruit or a berry? ";

 }

}

$strawberry = new Strawberry("Strawberry", "red");

$strawberry->message();

$strawberry->intro();

7.Abstract Classes and methods

❖ An abstract class is one that cannot be instantiated, only inherited. You
declare an abstract class with the keyword abstract, like this

❖ When inheriting from an abstract class, all methods marked abstract in
the parent's class declaration must be defined by the child;
additionally, these methods must be defined with the same visibility.

Syntax:

abstract class MyAbstractClass {
 abstract function myAbstractFunction() {
 }
}

8.Object serialization

➢ Serialization is used to convert an object to a byte-stream

representation and vice-versa.
➢ This is useful when we need to pass object data in the form of string of

text between scripts and applications.
➢ There are various situations in which we need to pass objects in the

form of string such as:

➢ Converting object to string and storing it in a text file or a database
table.

➢ Converting and passing objects in URL query string.

➢ Carrying objects between webpages in the session, etc.
➢ To convert a object to a string and then back to object when required we

can use

Following functions:

➢ serialize(): the serialize() function takes the object and converts it to a

string
➢ representation containing class name and its properties.

➢ unserialize(): the unserialize() function takes the serialized string or

string that is obtained from object and converts it again to the object.

➢ When the object is serialized, the content is placed with some type of a

specifier followed by a colon, then followed with the actual data
followed by a semi-colon.

➢ When we serialize an object it stores the class name and all its

properties. It doesn’t store methods of the class. Hence to unserialize
the serialized object the class should be present in the script before
unserializing it.

➢ So we have to unserialize the object in the script where the class is

defined or we can include the class in the script where we want to
unserialize the object with the include statement as shown below:

<?php
 include(“worker.inc”);
 //some code here
 unserialize($work);
?>

Now let us see how the object is serialized and unserialized using the function
serialize() and unserialize() in the following code shown below:

<?php
class Worker
{
 private $id;
 protected $name;
 protected $dept;

 public function __construct($id,$name,$dept)
 {
 $this->id=$id;
 $this->name=$name;
 $this->dept=$dept;
 }

 public function display()
 {
 echo "ID : ".$this->id."
Name : ".$this->name."

Department : ".$this->dept;
 }
}

//creating an instance of Worker class
$work=new Worker(1,'James Das','Development');

//serializing the object $work using serialize() function
$serialized=serialize($work);

//displaying the serialized string
echo "*Serialized object in string format:
".$serialized."

";

//unserializing the string $serialized to the object back
$work1=unserialize($serialized);

//calling the function display() of the Worker class using object $work1
echo "*Object Unserialised:
";
$work1->display();
?>

❖ In the above code, a class Worker is defined and its object $work is

created and values are passed in the constructor.

❖ Then the object is serialized using the serialize() function, the object

$work is passed as a parameter in the funciton .

❖ You can think that this data is to be stored somewhere, may in a

database table or in a text file.
❖ The serialized data is stored in a variable $serialized.

❖ The statement used for it is as shown below:

❖ $serialized=serialize($work);

❖ The string is displayed using the echo statement.

❖ After this the string variable $serialized is passed in the unserialize()

function to unserialize the object using the statement shown below:

❖ $work1=unserialize($serialized);

❖ Then to show that the object has been unserialized, its display() method

is called using the $work1 object.

Output of the code is shown below:

serialize_unserialize_output

9. Checking for class and method existence

The method exists () function checks if the class method exists.

Syntax

method_exists (object, name_of_method)

Parameters

object − The object instance or class name
name_of_method − The method name
Return
The method_exists() function returns TRUE if the method given by
method_name has been defined for the given object, FALSE otherwise.
Example
The following is an example
<?php
$directory = new Directory('.');
var_dump(method_exists($directory,'anything'));
?>
Output
bool(false)
Example
<?php
var_dump(method_exists('Directory','read'));
?>
Output
bool(true)

10. Exception
➢ An exception is an unexcepted outcome of a program, which can be

handled by the program itself.
➢ Basically, an exception disrupts the normal flow of the program.
➢ But it is different from an error because an exception can be handled,

whereas an error cannot be handled by the program itself.

➢ In other words, - "An unexpected result of a program is an exception,
which can be handled by the program itself."

➢ Exceptions can be thrown and caught in php.
➢ Try block
➢ The try block contains the code that may have an exception or where an

exception can arise.
➢ When an exception occurs inside the try block during runtime of code,

it is caught and resolved in catch block.
➢ The try block must be followed by catch or finally block. A try block can

be followed by minimum one and maximum any number of catch blocks.

catch -

The catch block contains the code that executes when a specified exception is
thrown.

It is always used with a try block, not alone. When an exception occurs, PHP
finds the matching catch block.

throw -

It is a keyword used to throw an exception. It also helps to list all the
exceptions that a function throws but does not handle itself.

finally -

The finally block contains a code, which is used for clean-up activity in PHP.
Basically, it executes the essential code of the program.

Example 1

Let's take an example to explain the common flow of throw and try-catch
block:

<?php

//user-defined function with an exception

function checkNumber($num) {

 if($num>=1) {

 //throw an exception

 throw new Exception("Value must be less than 1");

 }

 return true;

}

//trigger an exception in a "try" block

try {

 checkNumber(5);

 //If the exception throws, below text will not be display

 echo 'If you see this text, the passed value is less than 1';

}

//catch exception

catch (Exception $e) {

 echo 'Exception Message: ' .$e->getMessage();

}

?>

Output:

Exception Message: Value must be less than 1

11. INTRODUCTION TO DATABASE

 A database is a systematic collection of data.

 They support electronic storage and manipulation of data.

 Databases make data management easy.

INTROCTION TO SQL :

PHP Connect to MySQL

PHP 5 and later can work with a MySQL database using:

• MySQLi extension (the "i" stands for improved)
• PDO (PHP Data Objects)

Earlier versions of PHP used the MySQL extension. However, this extension
was deprecated in 2012.

MySQL Examples in Both MySQLi and PDO Syntax

In this and in the following chapters we demonstrate three ways of working
with PHP and MySQL:

• MySQLi (object-oriented)
• MySQLi (procedural)
• PDO

 12. Connecting to my sql

 Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to
connect to the server:

Example (MySQLi Object-Oriented)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

echo "Connected successfully";

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

echo "Connected successfully";

?>

Close the Connection

The connection will be closed automatically when the script ends. To close the
connection before, use the following:

MySQLi Object-Oriented:

$conn->close();

MySQLi Procedural:

mysqli_close($conn);

PDO:

$conn = null;

13. Database creation, selection

➢ PHP Create a MySQL Database

➢ A database consists of one or more tables.

➢ You will need special CREATE privileges to create or to delete a MySQL
database

➢ Create a MySQL Database Using MySQLi and PDO

➢ The CREATE DATABASE statement is used to create a database in
MySQL.

The following examples create a database named "myDB":

Example (MySQLi Object-oriented)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// Create database

$sql = "CREATE DATABASE myDB";

if ($conn->query($sql) === TRUE) {

 echo "Database created successfully";

} else {

 echo "Error creating database: " . $conn->error;

}

$conn->close();

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

// Create database

$sql = "CREATE DATABASE myDB";

if (mysqli_query($conn, $sql)) {

 echo "Database created successfully";

} else {

 echo "Error creating database: " . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

try {

 $conn = new PDO("mysql:host=$servername", $username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "CREATE DATABASE myDBPDO";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo "Database created successfully
";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

14. Database table creation updates, delete

 PHP MySQL Create Table

 A database table has its own unique name and consists of columns
and rows.

Create a MySQL Table Using MySQLi and PDO

The CREATE TABLE statement is used to create a table in MySQL.

We will create a table named "MyGuests", with five columns: "id", "firstname",
"lastname", "email" and "reg_date":

CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP

)

Notes on the table above:

The data type specifies what type of data the column can hold.

For a complete reference of all the available data types, go to our Data Types
reference.

After the data type, you can specify other optional attributes for each column:

• NOT NULL - Each row must contain a value for that column, null values
are not allowed

• DEFAULT value - Set a default value that is added when no other value
is passed

• UNSIGNED - Used for number types, limits the stored data to positive
numbers and zero

• AUTO INCREMENT - MySQL automatically increases the value of the
field by 1 each time a new record is added

• PRIMARY KEY - Used to uniquely identify the rows in a table. The
column with PRIMARY KEY setting is often an ID number, and is often
used with AUTO_INCREMENT

Each table should have a primary key column (in this case: the "id" column).
Its value must be unique for each record in the table.

The following examples shows how to create the table in PHP:

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

Example (MySQLi Object-oriented)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// sql to create table

$sql = "CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP

)";

if ($conn->query($sql) === TRUE) {

 echo "Table MyGuests created successfully";

} else {

 echo "Error creating table: " . $conn->error;

}

$conn->close();

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

// sql to create table

$sql = "CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP

)";

if (mysqli_query($conn, $sql)) {

 echo "Table MyGuests created successfully";

} else {

 echo "Error creating table: " . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDBPDO";

try {

 $conn = new PDO("mysql:host=$servername;dbname=$dbname",

$username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 // sql to create table

 $sql = "CREATE TABLE MyGuests (

 id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

 firstname VARCHAR(30) NOT NULL,

 lastname VARCHAR(30) NOT NULL,

 email VARCHAR(50),

 reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP

)";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo "Table MyGuests created successfully";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

15. Insert table, update, delete, data to the table

 PHP MySQL Insert Data

Insert Data Into MySQL Using MySQLi and PDO

After a database and a table have been created, we can start adding data in
them.

Here are some syntax rules to follow:

• The SQL query must be quoted in PHP
• String values inside the SQL query must be quoted
• Numeric values must not be quoted
• The word NULL must not be quoted

The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

The following examples add a new record to the "MyGuests" table:

Example (MySQLi Object-oriented)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if ($conn->query($sql) === TRUE) {

 echo "New record created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

if (mysqli_query($conn, $sql)) {

 echo "New record created successfully";

} else {

 echo "Error: " . $sql . "
" . mysqli_error($conn);

}

mysqli_close($conn);

?>

Example (PDO)

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDBPDO";

try {

 $conn = new PDO("mysql:host=$servername;dbname=$dbname",

$username, $password);

 // set the PDO error mode to exception

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $sql = "INSERT INTO MyGuests (firstname, lastname, email)

 VALUES ('John', 'Doe', 'john@example.com')";

 // use exec() because no results are returned

 $conn->exec($sql);

 echo "New record created successfully";

} catch(PDOException $e) {

 echo $sql . "
" . $e->getMessage();

}

$conn = null;

?>

 16. Fetch data from table acquiring the values, Joins query

 Using Joins at Command Prompt

Suppose we have two tables tutorials_bks and tutorials_inf, in TUTORIALS. A

complete listing is given below

Example

Try out the following examples −

root@host# mysql -u root -p password;

Enter password:*******

mysql> use TUTORIALSTUTORIAL

Database changed

mysql> SELECT * FROM tcount_bks;

+----+---------+

| id | book |

+----+---------+

| 1 | java |

| 2 | java |

| 3 | html |

| 4 | c++ |

| 5 | Android |

+----+---------+

5 rows in set (0.00 sec)

mysql> SELECT * from tutorials_inf;

+----+-------+

| id | name |

+----+-------+

| 1 | sai |

| 2 | johar |

| 3 | raghu |

| 4 | ram |

+----+-------+

4 rows in set (0.00 sec)

mysql>

Now we can write a SQL query to join these two tables. This query will select

all the names from table tutorials_inf and will pickup corresponding number

of tutorials fromtutorials_bks

mysql> SELECT a.id, a.name,b.id FROM tutorials_inf a,tutorials_bks b WHERE

a.id = b.id;

+----+-------+----+

| id | name | id |

+----+-------+----+

| 1 | sai | 1 |

| 2 | johar | 2 |

| 3 | raghu | 3 |

| 4 | ram | 4 |

+----+-------+----+

4 rows in set (0.00 sec)

mysql>

In tutorials_bks table, we have 5 records but in the above example it filters

and gives only 4 id records as per query

.Using Joins in PHP Script

You can use any of the above-mentioned SQL query in PHP script. You only

need to pass SQL query into PHP function mysqli_query() and then you will

fetch results in usual way.

Example

Try out the following example −

<?php

 $dbhost = 'localhost:3306';

 $dbuser = 'root';

 $dbpass = '';

 $dbname = 'TUTORIALS';

 $conn = mysqli_connect($dbhost, $dbuser, $dbpass,$dbname);

 if(! $conn) {

 die('Could not connect: ' . mysqli_error());

 }

 echo 'Connected successfully</br>';

 $sql = 'SELECT a.id, a.name,b.id FROM tutorials_inf a,tutorials_bks b WHERE

a.id = b.id';

 if($result = mysqli_query($conn, $sql)) {

 if(mysqli_num_rows($result) > 0) {

 echo "<table>";

 echo "<tr>";

 echo "<th>id</th>";

 echo "<th>name</th>";

 echo "<th>id</th>";

 echo "</tr>";

 while($row = mysqli_fetch_array($result)){

 echo "<tr>";

 echo "<td>" . $row['id'] . "</td>";

 echo "<td>" . $row['name'] . "</td>";

 echo "<td>" . $row['id'] . "</td>";

 echo "</tr>";

 }

 echo "</table>";

 mysqli_free_result($result);

 } else {

 echo "No records matching your query were found.";

 }

 } else {

 echo "ERROR: Could not able to execute $sql. " . mysqli_error($conn);

 }

 mysqli_close($conn);

?>

The sample output should be like this −

Connected successfully

id name id

1 sai 1

2 johar 2

3 raghu 3

4 ram 4

MySQL LEFT JOIN

A MySQLi left join is different from a simple join. A MySQLi LEFT JOIN gives

extra consideration to the table that is on the left.

If I do a LEFT JOIN, I get all the records that match in the same way and IN

ADDITION I get an extra record for each unmatched record in the left table of

the join - thus ensuring (in my example) that every name gets a mention −

Example

Try out the following example to understand LEFT JOIN −

root@host# mysql -u root -p password;

Enter password:*******

mysql> use TUTORIALS;

Database change

17.COOKIES :

17.1The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a

cookie directly on a browser).

A PHP script that sets a cookie might send headers that look something like

this −

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-Feb-07 22:03:38 GMT;

 path=/; domain=tutorialspoint.com

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date,

a path and a domain.

The name and value will be URL encoded. The expires field is an instruction

to the browser to "forget" the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this

information until the expiry date.

If the user points the browser at any page that matches the path and domain

of the cookie, it will resend the cookie to the server.

The browser's headers might look something like this −

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A PHP script will then have access to the cookie in the environmental

variables $_COOKIE or $HTTP_COOKIE_VARS[] which holds all cookie names

and values.

Above cookie can be accessed using $HTTP_COOKIE_VARS["name"].

17.2.Setting Cookies with PHP

➢ PHP provided setcookie() function to set a cookie.

➢ This function requires upto six arguments and should be called before

<html> tag.

➢ For each cookie this function has to be called separately.

setcookie(name, value, expire, path, domain, security);

Here is the detail of all the arguments −

Name − This sets the name of the cookie and is stored in an

environment variable called HTTP_COOKIE_VARS. This variable is used

while accessing cookies.

Value − This sets the value of the named variable and is the content

that you actually want to store.

Expiry − This specify a future time in seconds since 00:00:00 GMT on

1st Jan 1970. After this time cookie will become inaccessible. If this

parameter is not set then cookie will automatically expire when the

Web Browser is closed.

Path − This specifies the directories for which the cookie is valid. A

single forward slash character permits the cookie to be valid for all

directories.

Domain − This can be used to specify the domain name in very large

domains and must contain at least two periods to be valid. All cookies

are only valid for the host and domain which created them.

Security − This can be set to 1 to specify that the cookie should only be

sent by secure transmission using HTTPS otherwise set to 0 which

mean cookie can be sent by regular HTTP.

Following example will create two cookies name and age these cookies will

be expired after one hour.

<?php

 setcookie("name", "John Watkin", time()+3600, "/","", 0);

 setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

 <head>

 <title>Setting Cookies with PHP</title>

 </head>

 <body>

 <?php echo "Set Cookies"?>

 </body>

</html>

17.3.Deleting Cookie with PHP

 Officially, to delete a cookie you should call setcookie() with the name

argument only but this does not always work well, however, and should not

be relied on.

It is safest to set the cookie with a date that has already expired –

<?php

 setcookie("name", "", time()- 60, "/","", 0);

 setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

 <head>

 <title>Deleting Cookies with PHP</title>

 </head>

 <body>

 <?php echo "Deleted Cookies" ?>

 </body>

</html>

17.4 Creating a Cookie:

 As mentioned earlier, we can set cookies by using the function setcookie().

Example:

<!DOCTYPE html>

<?php

$cookie_name = "gfg";

$cookie_value = "GeeksforGeeks";

 // 86400 = 1 day

setcookie($cookie_name, $cookie_value, time() + (86400 * 15), "/");

?>

<html>

<body>

 <?php

 if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";

 }

 else

 {

 echo "Cookie '" . $cookie_name . "' is set!
";

 echo "Value is: " . $_COOKIE[$cookie_name];

 }

 ?>

</body>

</html>

Output:

Cookie 'gfg' is set!

Value is: GeeksforGeeks

Deleting Cookie:

➢ There is no special dedicated function provided in PHP to delete a cookie.

➢ All we have to do is to update the expire-time value of the cookie by

setting it to a past time using the setcookie() function.

➢ A very simple way of doing this is to deduct a few seconds from the

current time.

Syntax:

setcookie(name, time() - 3600);

Example:

<!DOCTYPE html>

<?php

// Set the expiration date to one hour ago

setcookie("gfg", "", time() - 3600);

?>

<html>

 <body>

 <?php

 echo "Cookie 'gfg' is deleted.";

 ?>

</body>

</html>

Output:

Cookie 'gfg' is deleted.

17.4.CREATING SESSION COOKIE

❖ session_set_cookie_params (int $lifetime [, string $path [, string

$domain [, bool $secure = FALSE [, bool $httponly = FALSE]]]]) : bool

❖ session_set_cookie_params (array $options) : bool

❖ Set cookie parameters defined in the php.ini file. The effect of this

function only lasts for the duration of the script. Thus, you need to call

session_set_cookie_params() for every request and before

session_start() is called.

❖ This function updates the runtime ini values of the corresponding PHP

ini configuration keys which can be retrieved with the ini_get().

Parameters :

lifetime

Lifetime of the session cookie, defined in seconds.

path

Path on the domain where the cookie will work. Use a single slash ('/') for all

paths on the domain.

domain

Cookie domain, for example 'www.php.net'. To make cookies visible on all

subdomains then the domain must be prefixed with a dot like '.php.net'.

secure

If TRUE cookie will only be sent over secure connections.

http only.

If set to TRUE then PHP will attempt to send the httponly flag when setting the

session cookie.

options

✓ An associative array which may have any of the keys lifetime, path,

domain, secure, httponly and samesite.

✓ The values have the same meaning as described for the parameters with

the same name.

✓ The value of the samesite element should be either Lax or Strict.

✓ If any of the allowed options are not given, their default values are the

same as the default values of the explicit parameters.

✓ If the samesite element is omitted, no SameSite cookie attribute is set.

Return Values

Returns TRUE on success or FALSE on failure.

17.6.CREATING QUERY STRING

 The information can be sent across the web pages. This information is

called query string.

➢ This query string can be passed from one page to another by appending

it to the address of the page.

➢ You can pass more than one query string by inserting the & sign

between the query strings.

➢ A query string can contain two things: the query string ID and its value.

The query string passed across the web pages is stored in $_REQUEST,

$_GET, or $_POST variable.

➢ Whether you passed the query string by using GET or POST method, it is

stored in $_REQUEST variable. If you want to access the query string

you can use these variables.

➢ You should note that whether the query string is passed by the GET or

POST method it can be accessed by using the $_REQUEST variable.

➢ If you want to use $_GET variable to access the query string the form

method need to be GET. Also you can use $_POST variable to get the

query string if the form method is POST.

In the following example, the query strings username and email(the

names of texboxes) are passed from a page called login.php to another

page called welcome.php when you click the submit button.

Login.php:

<html>

<head>

<title>Login form</title>

</head>

<body>

<form action="welcome.php" method=”get”>

<table>

<tr>

<td>User name:</td><td> <input type="text" name="username" ></td>

</tr>

<tr>

<td>E-mail: </td><td><input type="text" name="email" ></td>

</tr>

<tr>

<td><input type="submit" name="sub" value="submit"></td>

</tr>

</table>

</form>

</body>

</html>

welcome.php:

<?php

echo "Welcome ".$_GET['username']. "!
";

echo "Please remember this e-mail: ".$_GET['email']. " for later use.";

?>

CREATING QUERY STRING:

[9:47 pm, 31/10/2020] Sathya M.sc: php

Search

PHP 7.4.12 Released!

Change language:

English

Edit Report a Bug

http_build_query

(PHP 5, PHP 7)

http_build_query — Generate URL-encoded query string

Description ¶

http_build_query (mixed $query_data [, string $numeric_prefix [, string

$arg_separator [, int $enc_type = PHP_QUERY_RFC1738]]]) : string

Generates a URL-encoded query string from the associative (or indexed)

array provided.

Parameters ¶

query_data

May be an array or object containing properties.

If query_data is an array, it may be a simple one-dimensional structure,

or an array of arrays (which in turn may contain other arrays).

If query_data is an object, then only public properties will be

incorporated into the result.

numeric_prefix

If numeric indices are used in the base array and this parameter is

provided, it will be prepended to the numeric index for elements in the

base array only.

This is meant to allow for legal variable names when the data is decoded

by PHP or another CGI application later on.

arg_separator

arg_separator.output is used to separate arguments but may be

overridden by specifying this parameter.

enc_type

By default, PHP_QUERY_RFC1738.

If enc_type is PHP_QUERY_RFC1738, then encoding is performed per »

RFC 1738 and the application/x-www-form-urlencoded media type,

which implies that spaces are encoded as plus (+) signs.

If enc_type is PHP_QUERY_RFC3986, then encoding is performed

according to » RFC 3986, and spaces will be percent encoded (%20).

Return Values ¶

Returns a URL-encoded string.

Examples ¶

Example #1 Simple usage of http_build_query()

<?php

$data = array(

 'foo' => 'bar',

 'baz' => 'boom',

 'cow' => 'milk',

 'php' => 'hypertext processor'

);

echo http_build_query($data) . "\n";

echo http_build_query($data, '', '&');

?>

The above example will output:

foo=bar&baz=boom&cow=milk&php=hypertext+processor

foo=bar&baz=boom&cow=milk&php=hypertext+process

or

Example #2 http_build_query() with numerically index elements.

<?php

$data = array('foo', 'bar', 'baz', 'boom', 'cow' => 'milk', 'php' => 'hypertext

processor');

echo http_build_query($data) . "\n";

echo http_build_query($data, 'myvar_');

?>

The above example will output:

0=foo&1=bar&2=baz&3=boom&cow=milk&php=hypertext+processor

myvar_0=foo&myvar_1=bar&myvar_2=baz&myvar_3=boom&cow=milk

&php=hypertext+processor

 Unit -V

SESSION

1. What Is a Session

2. Starting a Session?

3. Working with Session Variables

4. Destroying a Session

5. Passing Session Id

6. Encoding and Decoding session variables

7. Disk Access ,I/O

8. E-mail

9. File Upload

10. File Download

11. Environment variables in php

12. Random numbers

13. Introduction to AJAX

14. Introduction to The XML Http Request Object

15. Method and Properties of XMLHttp Request Object

16. Application of AJAX in web application

1. What Is a Session

▪ A session is a mechanism to persist information across the

different web pages to identify users as they navigate a site

or app.

▪ The HTTP protocol is a stateless protocol, which means that

there's no way a server can remember a specific user

between multiple requests.

▪ For example, when you access a web page, the server is just

responsible for providing the contents of the requested

page.

▪ So when you access other pages of the same website, the

web server interprets each and every request separately, as

if they were unrelated to one another.

▪ There's no way for the server to know that each request

originated from the same user.

2. Starting a Session

➢ Whenever you want to deal with session variables, you need to make

sure that a session is already started.

➢ There are a couple of ways you can start a session in PHP.

➢ Use the session_start Function

➢ This is the method that you'll see most often, where a session is started

by the session_start function.

<?php

// start a session

session_start();

 // manipulate session variables

?>

 The important thing is that the session_start function must be called at

the beginning of the script, before any output is sent to the browser.

 Otherwise, you’ll encounter the infamous Headers are already sent

error.

 Automatically Start a Session

 If there’s a need to use sessions throughout your application, you can

also opt in to starting a session automatically without using the

session_start function.

 There’s a configuration option in the php.ini file which allows you to

start a session automatically for every request—session.auto_start.

 By default, it’s set to 0, and you can set it to 1 to enable the auto startup

functionality.

 session.auto_start = 1

 On the other hand, if you don’t have access to the php.ini file, and you're

using the Apache web server, you could also set this variable using

the .htaccess file.

4. Working with Session Variables

 Once a session is started, the $_SESSION super-global array is initialized with

the corresponding session information.

 By default, it’s initialized with a blank array, and you can store more

information by using a key-value pair.

<?php

// start a session

session_start();

// initialize session variables

$_SESSION['logged_in_user_id'] = '1';

$_SESSION['logged_in_user_name'] = 'Tutsplus';

// access session variables

echo $_SESSION['logged_in_user_id'];

echo $_SESSION['logged_in_user_name'];

?>

❖ We’ve started a session at the beginning of the script using the

session_start function.

❖ Following that, we’ve initialized a couple of session variables.

❖ Finally, we’ve accessed those variables using the $_SESSION super-

global.

❖ When you store the data in a session using the $_SESSION super-global,

it’s eventually stored in a corresponding session file on the server which

was created when the session was started.

❖ In this way, the session data is shared across multiple requests.

5. Destroying a Session

 The session_destroy function deletes everything that’s stored in the current

session.

Having said that, it doesn't unset global variables associated with session or

unset the session cookie.

 So if you're using the session_destroy function to log out a user, you must

unset the $_SESSION variable and unset the session cookie as well .

<?php

// start a session

session_start();

// destroy everything in this session

unset($_SESSION);

if (ini_get("session.use_cookies")) {

 $params = session_get_cookie_params();

 setcookie(session_name(), '', time() - 42000, $params["path"],

$params["domain"], $params["secure"],$params["httponly"]);

}

session_destroy();

?>

5. Passing Session Id

The server creates a unique number for every new session.

If you want to get a session id, you can use the session_id function, as shown in

the following snippet.

<?php

session_start();

echo session_id();

?>

That should give you the current session id.

The session_id function is interesting in that it can also take one argument—a

session id.

If you want to replace the system-generated session id with your own, you can

supply it to the first argument of the session_id function.

<?php

session_id(YOUR_SESSION_ID);

session_start();

?>

6. Encoding and Decoding Session variables

❖ In PHP, session encodes and decode operations are automatically

performed while storing session data into memory and reading stored

session, respectively.

❖ While encoding, the $_SESSION array is converted into serialized string

format and decoding reverts serialized string back to its original form.

❖ This serialization will not return the same format like PHP serialize()

❖ The encoded session data contains all $_SESSION elements separated by

the semicolon.

❖ Each element contains three parts: session index, session length, and

session value

For example,

index1|s:length1:"value1";index2|s:length2:"value2";...

session data while invoking session_decode.

Example:

<?php

session_start();

$_SESSION["product_code"] = "2222";

$_SESSION["logged_in"] = "yes";

$enc_session = session_encode();

print "Encoded Session Data:
";

print $enc_session . "

";

// Changing session values

$_SESSION['product_code'] = "2000";

$_SESSION["logged_in"] = "no";

// printing $_SESSION

print "SESSION Array:
";

print "<pre>";

print_r($_SESSION);

print "</pre>";

session_decode($enc_session);

// printing Reloaded $_SESSION

print "Reloaded SESSION Array:
";

print "<pre>";

print_r($_SESSION);

print "</pre>";

?>

Output:

Encoded Session Data:

product_code|s:4:"2222";logged_in|s:3:"yes";

Changed SESSION values:

Array (

 [product_code] => 2000

 [logged_in] => no

)Reloaded SESSION Array:

Array(

 [product_code] => 2222

 [logged_in] => yes

)

7. Disk Access,I/O

 PHP | disk_free_space() Function

➢ The disk_free_space() function in PHP is an inbuilt function which is

used to return the amount of free space in a specified directory.

➢ The disk_free_space() function denotes the free space in bytes

➢ It returns the available space on a filesystem or on a disk partition.

➢ The disk_free_space() function returns the number of bytes available on

the corresponding filesystem or disk partition for a specified directory

inputted as a string.

Syntax:

float disk_free_space ($directory)

 Parameters: The disk_free_space() function in PHP accepts one

parameter which is $directory. This parameter specifies the directory

which has to be checked.

 Return Value: It returns the available space on a filesystem or on a disk

partition.

 Errors And Exception:

 The disk_free_space() function in PHP may give improper results if a file

name is given as parameter instead of a directory.

 The disk_free_space() function in PHP doesn’t works for remote files.It

only works on files which are accessible by the server’s filesystem.

Examples:

Input : disk_free_space("D:");

Output : 10969328844

Input : disk_free_space("C:");

Output : 10969327231

8. E- mail?

❖ PHP mail is the built in PHP function that is used to send emails from

PHP scripts.

❖ The mail function accepts the following parameters;

❖ Email address

❖ Subject

❖ Message

❖ CC or BC email addresses

❖ It’s a cost effective way of notifying users on important events.

❖ Let users contact you via email by providing a contact us form on the

website that emails the provided content.

❖ Developers can use it to receive system errors by email

❖ You can use it to email your newsletter subscribers.

❖ You can use it to send password reset links to users who forget their

passwords

❖ You can use it to email activation/confirmation links. This is useful

when registering users and verifying their email addresses

Sending mail using PHP

The PHP mail function has the following basic syntax

<?php

mail($to_email_address,$subject,$message,[$headers],[$parameters]);

?>

 HERE,

“$to_email_address” is the email address of the mail recipient

“$subject” is the email subject

“$message” is the message to be sent.

“[$headers]” is optional, it can be used to include information such as CC, BCC

CC is the acronym for carbon copy.

It’s used when you want to send a copy to an interested person i.e. a complaint

email sent to a company can also be sent as CC to the complaints board.

BCC is the acronym for blind carbon copy.

It is similar to CC. The email addresses included in the BCC section will not be

shown to the other recipients.

9. PHP File Upload

✓ PHP allows you to upload single and multiple files through few lines of

code only.

✓ A PHP file upload feature allows you to upload binary and text files both.

Moreover, you can have the full control over the file to be uploaded

through PHP authentication and file operation functions.

PHP File Upload Example

File: uploadform.html

<form action="uploader.php" method="post" enctype="multipart/form-

data">

 Select File:

 <input type="file" name="fileToUpload"/>

 <input type="submit" value="Upload Image" name="submit"/>

</form>

File: uploader.php

<?php

$target_path = "e:/";

$target_path = $target_path.basename($_FILES['fileToUpload']['name']);

if(move_uploaded_file($_FILES['fileToUpload']['tmp_name'], $target_path)) {

 echo "File uploaded successfully!";

} else{

 echo "Sorry, file not uploaded, please try again!";

}

?>

10. File Download in PHP

➢ Using PHP you can create web page to download file easily using built-in

readfile() function.

➢ The readfile() function reads a file and writes it to the output buffer.

Example

<?php

$file_url = 'http://www.your_remote_server.com/f.txt';

header('Content-Type: application/octet-stream');

header("Content-Transfer-Encoding: utf-8");

header("Content-disposition: attachment; filename=\"" . basename($file_url) .

"\"");

readfile($file_url);

?>

readfile($file_url); ?>

11.Environment variables in Php

➢ $_ENV is another superglobal associative array in PHP.

➢ It stores environment variables available to current script.

➢ $HTTP_ENV_VARS also contains the same information, but is not a

superglobal, and now been deprecated.

➢ Environment variables are imported into global namespace.

➢ Most of these variables are provided by the shell under which PHP

parser is running.

➢ Hence, list of environment variables may be different on different

platforms.

➢ This array also includes CGI variables in case whether PHP is running as

a server module orCGI processor.

➢ PHP library has getenv()function to retrieve list of all environment

variables or value of a specific environment variable

 getenv

Following script displays values of all available environment variables.

<?php

$arr=getenv();

foreach ($arr as $key=>$val)

echo "$key=>$val";

?>

12. Random number

The rand() is an inbuilt-function in PHP used to generate a random number.

Syntax:

rand()

The rand() function is use to generate a random integer.

To generate a random integer in some range:

Syntax

rand(min,max)

min specifies the lowest value that will be returned.

max specifies the highest value to be returned.

This function will generate a random value in the range [min,max]

Note

If the min and max value is not specified, default is 0 and getrandmax()

respectively.

Example

rand() will return a random integer between 0 and getrandmax().

rand(15,35) will return a random integer in the range [15,35].

<?php

 $randomNumber = rand();

 print_r($randomNumber);

 print_r("\n");

 $randomNumber = rand(15,35);

 print_r($randomNumber);

?>

13. Introduction to Ajax?

AJAX full form is Asynchronous JavaScript & XML.

 It is a technology that reduces the interactions between the server and

client.

 It does this by updating only part of a web page rather than the whole

page.

 The asynchronous interactions are initiated by JavaScript.The purpose

of AJAX is to exchange small amounts of data with server without page

refresh.

 JavaScript is a client side scripting language.

 It is executed on the client side by the web browsers that support

JavaScript.JavaScript code only works in browsers that have JavaScript

enabled.

 XML is the acronym for Extensible Markup Language.

 It is used to encode messages in both human and machine readable

formats. It’s like HTML but allows you to create your custom tags.

 For more details on XML, see the article on XML

14. Introduction to The XMLHttpRequest Object

 The XMLHttpRequest object can be used to exchange data with a server

behind the scenes.

This means that it is possible to update parts of a web page, without reloading

the whole page.

Create an XMLHttpRequest Object

All modern browsers (Chrome, Firefox, IE7+, Edge, Safari Opera) have a built-

in XMLHttpRequest object.

Syntax for creating an XMLHttpRequest object:

variable = new XMLHttpRequest();

Example

var xhttp = new XMLHttpRequest();

Properties of XMLHttpRequest object

Property Description

onReadyStateChange

It is called whenever readystate attribute changes. It must not be used with

synchronous requests.

readyState represents the state of the request. It ranges from 0 to 4.

0 UNOPENED open() is not called.

1 OPENED open is called but send() is not called.

2 HEADERS_RECEIVED send() is called, and headers and status are available.

3 LOADING Downloading data; responseText holds the data.

4 DONE The operation is completed fully.

reponseText returns response as text.

responseXML returns response as text

15. Method and Properties of XMLHttpRequest Object

XMLHttpRequest Methods

• abort()

Cancels the current request.

• getAllResponseHeaders()

Returns the complete set of HTTP headers as a string.

• getResponseHeader(headerName)

Returns the value of the specified HTTP header.

• open(method, URL)

• open(method, URL, async)

• open(method, URL, async, userName)

• open(method, URL, async, userName, password)

Specifies the method, URL, and other optional attributes of a request.

The method parameter can have a value of "GET", "POST", or "HEAD".
Other HTTP methods such as "PUT" and "DELETE" (primarily used in
REST applications) may be possible.

The "async" parameter specifies whether the request should be
handled asynchronously or not.

"true" means that the script processing carries on after the send()
method without waiting for a response, and "false" means that the
script waits for a response before continuing script processing.

• send(content)

Sends the request.

• setRequestHeader(label, value)

Adds a label/value pair to the HTTP header to be sent.

XMLHttpRequest Properties

• onreadystatechange

An event handler for an event that fires at every state change.

• readyState

The readyState property defines the current state of the
XMLHttpRequest object.

 The following table provides a list of the possible values for the
readyState property −

16. Application of AJAX

➢ Ajax uses XHTML for content, CSS for presentation, along with

Document Object Model and JavaScript for dynamic content display.

➢ Conventional web applications transmit information to and from the

sever using synchronous requests. It means you fill out a form, hit

State Description

0 The request is not initialized.

1 The request has been set up.

2 The request has been sent.

3 The request is in process.

4 The request is completed.

submit, and get directed to a new page with new information from the

server.

➢ With AJAX, when you hit submit, JavaScript will make a request to the

server, interpret the results, and update the current screen. In the

purest sense, the user would never know that anything was even

transmitted to the server.

➢ XML is commonly used as the format for receiving server data, although

any format, including plain text, can be used.

➢ AJAX is a web browser technology independent of web server software.

➢ A user can continue to use the application while the client program

requests information from the server in the background.

➢ Intuitive and natural user interaction. Clicking is not required, mouse

movement is a sufficient event trigger.

➢ Data-driven as opposed to page-driven.

	Unit I.pdf
	Unit II.pdf
	Unit- III.pdf
	Unit IV.pdf
	Unit - V.pdf

